We study the impact of stellar cooling due to light axion emission on the formation and evolution of black hole binaries, via stable mass transfer and the common envelope scenario.~We find that in the presence of light axion emission, no binary black hole mergers are formed with black holes in the lower mass gap ($$M_{\rm BH} < 4 {\rm M}_\odot $$) via the common envelope formation channel.~In some systems, this happens because axions prevent Roche lobe overflow.~In others, they prevent the common envelope from being ejected.~Our results apply to axions with couplings $$ g_{a \gamma} \gtrsim 10^{-10}\, \rm GeV^{-1}$$ (to photons) or $$\alpha_{ae} \gtrsim 10^{-26} $$ (to electrons) and masses $$ m_a \ll 10 \, \rm keV$$.~Light, weakly coupled particles may therefore apparently produce a mass gap $$2 {\rm M}_\odot < M_{\rm BH} < 4 {\rm M}_\odot$$ in the LIGO/Virgo/KAGRA data, when no mass gap is present in the stellar remnant population. 
                        more » 
                        « less   
                    
                            
                            Numerical relativity simulations of the neutron star merger GW190425: microphysics and mass ratio effects
                        
                    
    
            ABSTRACT GW190425 was the second gravitational wave (GW) signal compatible with a binary neutron star (BNS) merger detected by the Advanced LIGO and Advanced Virgo detectors. Since no electromagnetic counterpart was identified, whether the associated kilonova was too dim or the localization area too broad is still an open question. We simulate 28 BNS mergers with the chirp mass of GW190425 and mass ratio 1 ≤ q ≤ 1.67, using numerical-relativity simulations with finite-temperature, composition dependent equations of state (EOS) and neutrino radiation. The energy emitted in GWs is $$\lesssim 0.083\mathrm{\, M_\odot }c^2$$ with peak luminosity of 1.1–$$2.4\times ~10^{58}/(1+q)^2\, {\rm {erg \, s^{-1}}}$$. Dynamical ejecta and disc mass range between 5 × 10−6–10−3 and 10−5–$$0.1 \mathrm{\, M_\odot }$$, respectively. Asymmetric mergers, especially with stiff EOSs, unbind more matter and form heavier discs compared to equal mass binaries. The angular momentum of the disc is 8–$$10\mathrm{\, M_\odot }~GM_{\rm {disc}}/c$$ over three orders of magnitude in Mdisc. While the nucleosynthesis shows no peculiarity, the simulated kilonovae are relatively dim compared with GW170817. For distances compatible with GW190425, AB magnitudes are always dimmer than ∼20 mag for the B, r, and K bands, with brighter kilonovae associated to more asymmetric binaries and stiffer EOSs. We suggest that, even assuming a good coverage of GW190425’s sky location, the kilonova could hardly have been detected by present wide-field surveys and no firm constraints on the binary parameters or EOS can be argued from the lack of the detection. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2116686
- PAR ID:
- 10372058
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 516
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 4760-4781
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Accretion discs around supermassive black holes are promising sites for stellar mass black hole mergers detectable with LIGO. Here we present the results of Monte Carlo simulations of black hole mergers within 1-d AGN disc models. For the spin distribution in the disc bulk, key findings are: (1) The distribution of χeff is naturally centred around $$\tilde{\chi }_{\rm eff} \approx 0.0$$, (2) the width of the χeff distribution is narrow for low natal spins. For the mass distribution in the disc bulk, key findings are: (3) mass ratios $$\tilde{q} \sim 0.5\!-\!0.7$$, (4) the maximum merger mass in the bulk is $$\sim 100\!-\!200\, \mathrm{M}_{\odot }$$, (5) $$\sim 1{{\ \rm per\ cent}}$$ of bulk mergers involve BH $$\gt 50\, \mathrm{M}_{\odot }$$ with (6) $$\simeq 80{{\ \rm per\ cent}}$$ of bulk mergers are pairs of first generation BH. Additionally, mergers at a migration trap grow an IMBH with typical merger mass ratios $$\tilde{q}\sim 0.1$$. Ongoing LIGO non-detections of black holes $$\gt 10^{2}\, \mathrm{M}_{\odot }$$ puts strong limits on the presence of migration traps in AGN discs (and therefore AGN disc density and structure) as well as median AGN disc lifetime. The highest merger rate occurs for this channel if AGN discs are relatively short-lived (≤1 Myr) so multiple AGN episodes can happen per Galactic nucleus in a Hubble time.more » « less
- 
            ABSTRACT While the first “seeds” of supermassive black holes (BH) can range from $$\sim 10^2-10^6 \rm ~{\rm M}_{\odot }$$, the lowest mass seeds ($$\lesssim 10^3~\rm {\rm M}_{\odot }$$) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the $$z\ge 7$$ BH populations for low-mass seeds. We ran two types of boxes that model $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution $$[9~\mathrm{Mpc}]^3$$ (BRAHMA-9-D3) boxes that directly resolve $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume $$[18~\mathrm{Mpc}]^3$$ (BRAHMA-18-E4), and $$\sim [36~\mathrm{Mpc}]^3$$ (BRAHMA-36-E5) boxes that seed their smallest resolvable $$\sim 10^4~\&~10^5~\mathrm{{\rm M}_{\odot }}$$ BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between $$\sim 10^3\,\mathrm{ and}\,10^7~\rm {\rm M}_{\odot }$$. The active galactic nuclei (AGN) luminosity function variations are small (factors of $$\sim 2-3$$) at the anticipated detection limits of potential future X-ray facilities ($$\sim 10^{43}~ \mathrm{ergs~s^{-1}}$$ at $$z\sim 7$$). Our simulations predict BHs $$\sim 10-100$$ times heavier than the local $$M_*$$ versus $$M_{\mathrm{ bh}}$$ relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at $$\sim 1-15~\mathrm{kpc}$$, with rates of $$\sim 200-2000$$ yr−1 for $$\gtrsim 10^3~\rm {\rm M}_{\odot }$$ BHs, $$\sim 6-60$$ yr−1 for $$\gtrsim 10^4~\rm {\rm M}_{\odot }$$ BHs, and up to $$\sim 10$$ yr−1 amongst $$\gtrsim 10^5~\rm {\rm M}_{\odot }$$ BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models.more » « less
- 
            ABSTRACT We report the discovery and analysis of a candidate triple-lens single-source (3L1S) microlensing event, OGLE-2019-BLG-1470. This event was first classified as a normal binary-lens single-source (2L1S) event, but a careful 2L1S modelling showed that it needs an additional lens or source to fit the observed data. It is found that the 3L1S model provides the best fit, but the binary-lens binary-source (2L2S) model is only disfavoured by Δχ2 ≃ 18. All of the feasible models include a planet with planet-to-host mass-ratios 10−3 ≲ q ≲ 10−2. A Bayesian analysis based on a Galactic model indicates that the planet is super-Jovian, and the projected host-planet separation is about 3 au. Specifically, for the best-fitting 3L1S model, the two stars have masses of $$M_1=0.57^{+0.43}_{-0.32}{\rm M}_{\odot}$$, and $$M_2=0.18^{+0.15}_{-0.10}\mathrm{M}_{\odot}$$ with projected separation of $$1.3^{+0.5}_{-0.5}$$ au, and the planetary mass is $$M_3=2.2^{+1.8}_{-1.3}M_{\rm {Jupiter}}$$. For the 2L2S model, the masses of the host star and the planet are $$0.55^{+0.44}_{-0.31}\mathrm{M}_{\odot }$$ and $$4.6^{+3.7}_{-2.6}M_{\rm {Jupiter}}$$, respectively. By investigating the properties of all known microlensing planets in binary systems, we find that all planets in binary systems published by the KMTNet survey are located inside the resonant caustics range with q ≳ 2 × 10−3, indicating the incompleteness of the KMTNet sample for planets in binary systems. Thus, planets in binary systems cannot be included in the current study of the KMTNet mass-ratio function, and a systematic search for planetary anomalies in KMTNet microlensing light curves of binary systems is needed.more » « less
- 
            ABSTRACT The progenitor system of the compact binary merger GW190425 had a total mass of $$3.4^{+0.3}_{-0.1}$$ M⊙ (90th-percentile confidence region) as measured from its gravitational wave signal. This mass is significantly different from the Milky Way (MW) population of binary neutron stars (BNSs) that are expected to merge in a Hubble time and from that of the first BNS merger, GW170817. Here, we explore the expected electromagnetic (EM) signatures of such a system. We make several astrophysically motivated assumptions to further constrain the parameters of GW190425. By simply assuming that both components were NSs, we reduce the possible component masses significantly, finding $$m_{1}=1.85^{+0.27}_{-0.19}$$ M⊙ and $$m_{2}=1.47^{+0.16}_{-0.18}$$ M⊙. However, if the GW190425 progenitor system was an NS–black hole (BH) merger, we find best-fitting parameters $$m_{1}=2.19^{+0.21}_{-0.17}$$ M⊙ and $$m_{2}=1.26^{+0.10}_{-0.08}$$ M⊙. For a well-motivated BNS system where the lighter NS has a mass similar to the mass of non-recycled NSs in MW BNS systems, we find $$m_{1}=2.03^{+0.15}_{-0.14}$$ M⊙ and m2 = 1.35 ± 0.09 M⊙, corresponding to only 7 per cent mass uncertainties. For all scenarios, we expect a prompt collapse of the resulting remnant to a BH. Examining detailed models with component masses similar to our best-fitting results, we find the EM counterpart to GW190425 is expected to be significantly redder and fainter than that of GW170817. We find that almost all reported search observations were too shallow to detect the expected counterpart to GW190425. If the LIGO–Virgo Collaboration promptly provides the chirp mass, the astronomical community can adapt their observations to improve the likelihood of detecting a counterpart for similarly ‘high-mass’ BNS systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
