skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Light axion emission and the formation of merging binary black holes
We study the impact of stellar cooling due to light axion emission on the formation and evolution of black hole binaries, via stable mass transfer and the common envelope scenario.~We find that in the presence of light axion emission, no binary black hole mergers are formed with black holes in the lower mass gap ($$M_{\rm BH} < 4 {\rm M}_\odot $$) via the common envelope formation channel.~In some systems, this happens because axions prevent Roche lobe overflow.~In others, they prevent the common envelope from being ejected.~Our results apply to axions with couplings $$ g_{a \gamma} \gtrsim 10^{-10}\, \rm GeV^{-1}$$ (to photons) or $$\alpha_{ae} \gtrsim 10^{-26} $$ (to electrons) and masses $$ m_a \ll 10 \, \rm keV$$.~Light, weakly coupled particles may therefore apparently produce a mass gap $$2 {\rm M}_\odot < M_{\rm BH} < 4 {\rm M}_\odot$$ in the LIGO/Virgo/KAGRA data, when no mass gap is present in the stellar remnant population.  more » « less
Award ID(s):
2207880
PAR ID:
10494318
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
108
Issue:
1
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT While the first “seeds” of supermassive black holes (BH) can range from $$\sim 10^2-10^6 \rm ~{\rm M}_{\odot }$$, the lowest mass seeds ($$\lesssim 10^3~\rm {\rm M}_{\odot }$$) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the $$z\ge 7$$ BH populations for low-mass seeds. We ran two types of boxes that model $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution $$[9~\mathrm{Mpc}]^3$$ (BRAHMA-9-D3) boxes that directly resolve $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume $$[18~\mathrm{Mpc}]^3$$ (BRAHMA-18-E4), and $$\sim [36~\mathrm{Mpc}]^3$$ (BRAHMA-36-E5) boxes that seed their smallest resolvable $$\sim 10^4~\&~10^5~\mathrm{{\rm M}_{\odot }}$$ BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between $$\sim 10^3\,\mathrm{ and}\,10^7~\rm {\rm M}_{\odot }$$. The active galactic nuclei (AGN) luminosity function variations are small (factors of $$\sim 2-3$$) at the anticipated detection limits of potential future X-ray facilities ($$\sim 10^{43}~ \mathrm{ergs~s^{-1}}$$ at $$z\sim 7$$). Our simulations predict BHs $$\sim 10-100$$ times heavier than the local $$M_*$$ versus $$M_{\mathrm{ bh}}$$ relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at $$\sim 1-15~\mathrm{kpc}$$, with rates of $$\sim 200-2000$$ yr−1 for $$\gtrsim 10^3~\rm {\rm M}_{\odot }$$ BHs, $$\sim 6-60$$ yr−1 for $$\gtrsim 10^4~\rm {\rm M}_{\odot }$$ BHs, and up to $$\sim 10$$ yr−1 amongst $$\gtrsim 10^5~\rm {\rm M}_{\odot }$$ BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models. 
    more » « less
  2. ABSTRACT The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $$M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($$M_{*}\lesssim 10^7\, \rm {M}_{\odot }$$) are mostly quiescent and higher mass satellites ($$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$) are mostly star forming, with intermediate-mass satellites ($$M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($$M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $$M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$, they do not generally reproduce SAGA’s turnover at lower masses. 
    more » « less
  3. ABSTRACT We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($$M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$$), run to z = 0 with $$30\, \mathrm{M}_{\odot }$$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $$M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $$M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($$M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core $${\gt}200\rm \, pc$$, while lower mass UFDs exhibit cusps down to $${\lesssim}100\rm \, pc$$, as expected from energetic arguments. Our dwarfs with $$M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model). 
    more » « less
  4. ABSTRACT We explore implications of a range of black hole (BH) seeding prescriptions on the formation of the brightest $$z$$ ≳ 6 quasars in cosmological hydrodynamic simulations. The underlying galaxy formation model is the same as in the IllustrisTNG simulations. Using constrained initial conditions, we study the growth of BHs in rare overdense regions (forming $$\gtrsim 10^{12}\, {\rm M}_{\odot }\,h^{-1}$$ haloes by $$z$$ = 7) using a  (9 Mpc h−1)3 simulated volume. BH growth is maximal within haloes that are compact and have a low tidal field. For these haloes, we consider an array of gas-based seeding prescriptions wherein $$M_{\mathrm{seed}}=10^4\!-\!10^6\, {\rm M}_{\odot }\,h^{-1}$$ seeds are inserted in haloes above critical thresholds for halo mass and dense, metal-poor gas mass (defined as $$\tilde{M}_{\mathrm{h}}$$ and $$\tilde{M}_{\mathrm{sf,mp}}$$, respectively, in units of Mseed). We find that a seed model with $$\tilde{M}_{\mathrm{sf,mp}}=5$$ and $$\tilde{M}_{\mathrm{h}}=3000$$ successfully produces a $$z$$ ∼ 6 quasar with $$\sim 10^9\, {\rm M}_{\odot }$$ mass and ∼1047 erg s−1 luminosity. BH mergers play a crucial role at $$z$$ ≳ 9, causing an early boost in BH mass at a time when accretion-driven BH growth is negligible. With more stringent seeding conditions (e.g. $$\tilde{M}_{\mathrm{sf,mp}}=1000$$), the relative paucity of BH seeds results in a much lower merger rate. In this case, $$z$$ ≳ 6 quasars can only be formed if we enhance the maximum allowed BH accretion rates (by factors ≳10) compared to the accretion model used in IllustrisTNG. This can be achieved either by allowing for super-Eddington accretion, or by reducing the radiative efficiency. Our results demonstrate that progenitors of $$z$$ ∼ 6 quasars have distinct BH merger histories for different seeding models, which will be distinguishable with Laser Interferometer Space Antenna observations. 
    more » « less
  5. ABSTRACT The origin of the ‘seeds’ of supermassive black holes (BHs) continues to be a puzzle, as it is currently unclear if the imprints of early seed formation could survive to today. We examine the signatures of seeding in the local Universe using five $$[18~\mathrm{Mpc}]^3$$BRAHMA simulation boxes run to $z=0$. They initialize $$1.5\times 10^5~\rm {M}_{\odot }$$ BHs using different seeding models. The first four boxes initialize BHs as heavy seeds using criteria that depend on dense and metal-poor gas, Lyman–Werner radiation, gas spin, and environmental richness. The fifth box initializes BHs as descendants of lower mass seeds ($$\sim 10^3~\rm {M}_{\odot }$$) using a new stochastic seed model built in our previous work. In our simulations, we find that the abundances and properties of $$\sim 10^5-10^6~\rm {M}_{\odot }$$ local BHs hosted in $$M_*\lesssim 10^{9}~\rm {M}_{\odot }$$ dwarf galaxies, are sensitive to the assumed seeding criteria. This is for two reasons: (1) there is a substantial population of local $$\sim 10^5~\rm {M}_{\odot }$$ BHs that are ungrown relics of early seeds from $$z\sim 5-10$$; (2) BH growth up to $$\sim 10^6~\rm {M}_{\odot }$$ is dominated by mergers in our simulations all the way down to $$z\sim 0$$. As the contribution from gas accretion increases, the signatures of seeding start to weaken in more massive $$\gtrsim 10^6~\rm {M}_{\odot }$$ BHs, and they are erased for $$\gtrsim 10^7~\rm {M}_{\odot }$$ BHs. The different seed models explored here predict abundances of local $$\sim 10^6~\rm {M}_{\odot }$$ BHs ranging from $$\sim 0.01-0.05~\mathrm{Mpc}^{-3}$$ with occupation fractions of $$\sim 20-100~{{\ \rm per\ cent}}$$ for $$M_*\sim 10^{9}~\rm {M}_{\odot }$$ galaxies. These results highlight the potential for placing constraints on seeding models using local $$\sim 10^5-10^6~\rm {M}_{\odot }$$ BHs hosted in dwarf galaxies. Since merger dynamics and accretion physics impact the persistence of seeding signatures, and both high and low mass seed models can produce similar local BH populations, disentangling their roles will require combining high and low redshift constraints. 
    more » « less