Benchmark brown dwarf companions with well-determined ages and model-independent masses are powerful tools to test substellar evolutionary models and probe the formation of giant planets and brown dwarfs. Here, we report the independent discovery of HIP 21152 B, the first imaged brown dwarf companion in the Hyades, and conduct a comprehensive orbital and atmospheric characterization of the system. HIP 21152 was targeted in an ongoing high-contrast imaging campaign of stars exhibiting proper-motion changes between Hipparcos and Gaia, and was also recently identified by Bonavita et al. (2022) and Kuzuhara et al. (2022). Our Keck/NIRC2 and SCExAO/CHARIS imaging of HIP 21152 revealed a comoving companion at a separation of 0.″37 (16 au). We perform a joint orbit fit of all available relative astrometry and radial velocities together with the Hipparcos-Gaia proper motions, yielding a dynamical mass of
We present the direct imaging discovery of a low-mass companion to the nearby accelerating F star, HIP 5319, using SCExAO coupled with the CHARIS, VAMPIRES, and MEC instruments in addition to Keck/NIRC2 imaging. CHARIS
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10372075
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 4
- Page Range or eLocation-ID:
- Article No. 152
- ISSN:
- 0004-6256
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract , which is 1–2σ lower than evolutionary model predictions. Hybrid grids that include the evolution of cloud properties best reproduce the dynamical mass. We also identify a comoving wide-separation (1837″ or 7.9 × 104au) early-L dwarf with an inferred mass near the hydrogen-burning limit. Finally, we analyze the spectra and photometry of HIP 21152 B using the Saumon & Marley (2008)more » -
Abstract We present the latest and most precise characterization of the architecture for the ancient (≈11 Gyr) Kepler-444 system, which is composed of a K0 primary star (Kepler-444 A) hosting five transiting planets and a tight M-type spectroscopic binary (Kepler-444 BC) with an A–BC projected separation of 66 au. We have measured the system’s relative astrometry using the adaptive optics imaging from Keck/NIRC2 and Kepler-444 A’s radial velocities from the Hobby-Eberly Telescope and reanalyzed relative radial velocities between BC and A from Keck/HIRES. We also include the Hipparcos-Gaia astrometric acceleration and all published astrometry and radial velocities in an updated orbit analysis of BC’s barycenter. These data greatly extend the time baseline of the monitoring and lead to significant updates to BC’s barycentric orbit compared to previous work, including a larger semimajor axis (
au), a smaller eccentricity (e = 0.55 ± 0.05), and a more precise inclination ( ). We have also derived the first dynamical masses of B and C components. Our results suggest that Kepler-444 A’s protoplanetary disk was likely truncated by BC to a radius of ≈8 au, which resolves the previously noticed tension between Kepler-444 A’s disk mass and planet masses. Kepler-444more » -
Abstract HR 8799 is a young A5/F0 star hosting four directly imaged giant planets at wide separations (∼16–78 au), which are undergoing orbital motion and have been continuously monitored with adaptive optics imaging since their discovery over a decade ago. We present a dynamical mass of HR 8799 using 130 epochs of relative astrometry of its planets, which include both published measurements and new medium-band 3.1
μ m observations that we acquired with NIRC2 at Keck Observatory. For the purpose of measuring the host-star mass, each orbiting planet is treated as a massless particle and is fit with a Keplerian orbit using Markov chain Monte Carlo. We then use a Bayesian framework to combine each independent total mass measurement into a cumulative dynamical mass using all four planets. The dynamical mass of HR 8799 isM ⊙assuming a uniform stellar mass prior, orM ⊙with a weakly informative prior based on spectroscopy. There is a strong covariance between the planets’ eccentricities and the total system mass; when the constraint is limited to low-eccentricity solutions ofe < 0.1, which are motivated by dynamical stability, our mass measurement improves toM ⊙. Our dynamical mass and other fundamental measured parameters of HRmore » -
Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (
R ∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of km s−1, which results in a dynamical mass ofM ⊙and a mass-to-light ratio ofM/L V =M ⊙/L ⊙. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L > 80M ⊙/L ⊙). However, we do not resolve a metallicity dispersion (σ [Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in linemore » -
Abstract We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (
M BH), stellar mass-to-light ratio, dark matter content, and intrinsic shape. We find and a triaxial intrinsic shape with axis ratiosp =b /a = 0.902 ± 0.009 and , triaxiality parameterT = 0.39 ± 0.04. In comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 prefer and , respectively. Neither model can account for the non-axisymmetric stellar velocity features present inmore »