skip to main content


Title: The Enigmatic Culex pipiens (Diptera: Culicidae) Species Complex: Phylogenetic Challenges and Opportunities From a Notoriously Tricky Mosquito Group
Abstract

Our understanding of how natural selection and demographic processes produce and maintain biological diversity remains limited. However, developments in high-throughput genomic sequencing coupled with new analytical tools and phylogenetic methods now allow detailed analyses of evolutionary patterns in genes and genomes responding to specific demographic events, ecological changes, or other selection pressures. Here, we propose that the mosquitoes in the Culex pipiens complex, which include taxa of significant medical importance, provide an exceptional system for examining the mechanisms underlying speciation and taxonomic radiation. Furthermore, these insects may shed light on the influences that historical and contemporary admixture have on taxonomic integrity. Such studies will have specific importance for mitigating the disease and nuisance burdens caused by these mosquitoes. More broadly, they could inform predictions about future evolutionary trajectories in response to changing environments and patterns of evolution in other cosmopolitan and invasive species that have developed recent associations with humans.

 
more » « less
Award ID(s):
2001213 1909824
NSF-PAR ID:
10372098
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Annals of the Entomological Society of America
Volume:
115
Issue:
1
ISSN:
0013-8746
Format(s):
Medium: X Size: p. 95-104
Size(s):
["p. 95-104"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Alpha taxonomy endeavours to propose a coherent vision of existing species and, simultaneously, to individualize the natural entities useful to understand evolutionary processes. This ideal is especially difficult when available data lack congruence. Here we address the polytypic species Synallaxis rutilans (ruddy spinetail), a suboscine passerine widely distributed in the Amazon Basin and whose taxonomy could, potentially, aid our understanding of processes shaping its biodiversity. Combining genetic [genomic ultraconserved elements (UCE) and mtDNA] and morphological data, we demonstrate that while delimitation of genetic lineages and their phylogenetic relationships are strongly associated with classic Amazonian geographic barriers, such as rivers, different coloration patterns appear to be more associated with local selection processes for phenotype. Employing an evolutionary approach, whereby the species is considered a taxonomic category, rather than a nomenclatural rank, we propose to recognize five species: S. amazonica, S. caquetensis, S. dissors, S. omissa and S. rutilans. The taxonomic arrangement proposed here permits better understanding of the similarities and differences among taxa from different areas of endemism, and represents patterns of genetic and morphological diversity resulting from distinct processes acting across certain time frames. This arrangement draws attention to the importance of understanding the evolutionary processes operating in the complex and constantly changing Amazonian landscape.

     
    more » « less
  2. Abstract

    Speciation genomic studies have revealed that genomes of diverging lineages are shaped jointly by the actions of gene flow and selection. These evolutionary forces acting in concert with processes such as recombination and genome features such as gene density shape a mosaic landscape of divergence. We investigated the roles of recombination and gene density in shaping the patterns of differentiation and divergence between the cyclically parthenogenetic ecological sister‐taxa,Daphnia pulicariaandDaphnia pulex. First, we assembled a phased chromosome‐scale genome assembly using trio‐binning forD.pulicariaand constructed a genetic map using an F2‐intercross panel to understand sex‐specific recombination rate heterogeneity. Finally, we used a ddRADseq data set with broad geographic sampling ofD.pulicaria,D.pulex, and their hybrids to understand the patterns of genome‐scale divergence and demographic parameters. Our study provides the first sex‐specific estimates of recombination rates for a cyclical parthenogen, and unlike other eukaryotic species, we observed male‐biased heterochiasmy inD.pulicaria, which may be related to this somewhat unique breeding mode. Additionally, regions of high gene density and recombination are generally more divergent than regions of suppressed recombination. Outlier analysis indicated that divergent genomic regions are probably driven by selection onD.pulicaria, the derived lineage colonizing a novel lake habitat. Together, our study supports a scenario of selection acting on genes related to local adaptation shaping genome‐wide patterns of differentiation despite high local recombination rates in this species complex. Finally, we discuss the limitations of our data in light of demographic uncertainty.

     
    more » « less
  3. Abstract Aim

    Pleistocene climate and associated environmental changes have influenced phylogeographic patterns of many species. These not only depend on a species’ life history but also vary regionally. Consequently, populations of widespread species that occur in several biomes might display different evolutionary trajectories. We aimed to identify regional drivers of diversification in the common pheasant, a widely distributed ecological generalist.

    Location

    Asia.

    Taxon

    Common pheasantPhasianus colchicus.

    Methods

    Using a comprehensive geographical sampling of 204 individuals from the species’ entire range genotyped at seven nuclear and two mitochondrial loci, we reconstructed spatio‐temporal diversification and demographic history of the common pheasant. We applied Bayesian phylogenetic inference to describe phylogeographic structure, generated a species tree and inferred demographic history within and migration between lineages. Moreover, to establish a taxonomic framework, we conducted a species delimitation analysis.

    Results

    The common pheasant diversified during the Late Pleistocene into eight distinct lineages. It originated at the edge of the Qinghai–Tibetan plateau and spread to East and Central Asia. Only the widely distributed lowland lineage of East Asia displayed recent range expansion. Greater phylogeographic structure was identified elsewhere, with lineages showing no sign of recent demographic changes. One lineage in south‐central China is the result of long‐term isolation within a climatically stable but topographically complex region. In lineages from arid Central Asia and China, range expansions were impeded by repeated population fragmentation during dry glacial periods and by recent aridification.

    Main conclusions

    Spatio‐temporal phylogeographic frameworks of widespread taxa such as the common pheasant provide valuable opportunities to identify divergent drivers of regional diversification. Our results suggest that diversification and population histories in the eight distinct evolutionary lineages were shaped by regionally variable effects of past climate and associated environmental changes. The evolutionary history of the common pheasant is best reflected by its being split into three species.

     
    more » « less
  4. Abstract

    Arthropods harbor a largely undocumented diversity of RNA viruses. Some arthropods, like mosquitoes, can transmit viruses to vertebrates but are themselves parasitized by other arthropod species, such as mites. Very little is known about the viruses of these ectoparasites and how they move through the host–parasite relationship. To address this, we determined the virome of both mosquitoes and the mites that feed on them. The mosquito Aedes communis is an abundant and widely distributed species in Sweden, in northern Europe. These dipterans are commonly parasitized by water mite larvae (Trombidiformes: Mideopsidae) that are hypothesized to impose negative selection pressures on the mosquito by reducing fitness. In turn, viruses are dual-host agents in the mosquito–mite interaction. We determined the RNA virus diversity of mite-free and mite-detached mosquitoes, as well as their parasitic mites, using meta-transcriptomic sequencing. Our results revealed an extensive RNA virus diversity in both mites and mosquitoes, including thirty-seven putative novel RNA viruses that cover a wide taxonomic range. Notably, a high proportion of viruses (20/37) were shared between mites and mosquitoes, while a limited number of viruses were present in a single host. Comparisons of virus composition and abundance suggest potential virus transfer between mosquitoes and mites during their symbiotic interaction. These findings shed light on virome diversity and ecology in the context of arthropod host–parasite–virus relationships.

     
    more » « less
  5. Abstract Aim

    To test the importance of alternative diversification drivers and biogeographical processes for the evolution of Amazonian upland forest birds through a densely sampled analysis of diversification of the endemic Amazonian genusRhegmatorhinaat multiple taxonomic and temporal scales.

    Location

    Amazonia.

    Taxon

    Antbirds (Thamnophilidae).

    Methods

    We sequenced four mtDNAand nuclear gene regions of 120 individuals from 50 localities representing all recognized species and subspecies of the genus. We performed molecular phylogenetic analyses using both gene tree and species tree methods, molecular dating analysis and estimated population demographic history and gene flow.

    Results

    Dense sampling throughout the distribution ofRhegmatorhinarevealed that the main Amazonian rivers delimit the geographic distribution of taxa as inferred from mtDNAlineages. Molecular phylogenetic analyses resulted in a strongly supported phylogenetic hypothesis for the genus, with two main clades currently separated by the Madeira River. Molecular dating analysis indicated diversification during the Quaternary. Reconstruction of recent demographic history of populations revealed a trend for population expansion in eastern Amazonia and stability in the west. Estimates of gene flow corroborate the possibility that migration after divergence had some influence on the current patterns of diversity.

    Main Conclusions

    Based on broad‐scale sampling, a clarification of taxonomic boundaries, and strongly supported phylogenetic relationships, we confirm that, first, mitochondrial lineages within this upland forest Amazonian bird genus agree with spatial patterns known for decades based on phenotypes, and second, that most lineages are geographically delimited by the large Amazonian rivers. The association between past demographic changes related to palaeoclimatic cycles and the historically varying strength and size of rivers as barriers to dispersal may be the path to the answer to the long‐standing question of identifying the main drivers of Amazonian diversification.

     
    more » « less