skip to main content


Search for: All records

Award ID contains: 2001213

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Macroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers.

    Location

    Global.

    Time period

    1994–2019.

    Major taxa studied

    Avian haemosporidian parasites (generaPlasmodium,Haemoproteus,LeucocytozoonandParahaemoproteus).

    Methods

    We amalgamated infection data from 53,669 individual birds representing 2,445 species world‐wide. Spatio‐phylogenetic hierarchical Bayesian models were built to disentangle potential landscape, climatic and biotic drivers of infection probability while accounting for spatial context and avian host phylogenetic relationships.

    Results

    Idiosyncratic responses of the three most common haemosporidian genera to climate, habitat, host relatedness and host ecological traits indicated marked variation in host infection rates from local to global scales. Notably, host ecological drivers, such as migration distance forPlasmodiumandParahaemoproteus, exhibited predominantly varying or even opposite effects on infection rates across regions, whereas climatic effects on infection rates were more consistent across realms. Moreover, infections in some low‐prevalence realms were disproportionately concentrated in a few local hotspots, suggesting that regional‐scale variation in habitat and microclimate might influence transmission, in addition to global drivers.

    Main conclusions

    Our hierarchical global analysis supports regional‐scale findings showing the synergistic effects of landscape, climate and host ecological traits on parasite transmission for a cosmopolitan and diverse group of avian parasites. Our results underscore the need to account for such interactions, in addition to possible variation in drivers across regions, to produce the robust inference required to predict changes in infection risk under future scenarios.

     
    more » « less
  2. Abstract

    Our understanding of how natural selection and demographic processes produce and maintain biological diversity remains limited. However, developments in high-throughput genomic sequencing coupled with new analytical tools and phylogenetic methods now allow detailed analyses of evolutionary patterns in genes and genomes responding to specific demographic events, ecological changes, or other selection pressures. Here, we propose that the mosquitoes in the Culex pipiens complex, which include taxa of significant medical importance, provide an exceptional system for examining the mechanisms underlying speciation and taxonomic radiation. Furthermore, these insects may shed light on the influences that historical and contemporary admixture have on taxonomic integrity. Such studies will have specific importance for mitigating the disease and nuisance burdens caused by these mosquitoes. More broadly, they could inform predictions about future evolutionary trajectories in response to changing environments and patterns of evolution in other cosmopolitan and invasive species that have developed recent associations with humans.

     
    more » « less
  3. Abstract

    An infestation of cat fleas in a research center led to the detection of two genotypes ofCtenocephalides felisbiting humans in New Jersey, USA. The rarer flea genotype had an 83% incidence ofRickettsia asembonensis, a recently described bacterium closely related toR. felis,a known human pathogen. A metagenomics analysis developed in under a week recovered the entireR. asembonensisgenome at high coverage and matched it to identical or almost identical (> 99% similarity) strains reported worldwide. Our study exposes the potential of cat fleas as vectors of human pathogens in crowded northeastern U.S, cities and suburbs where free-ranging cats are abundant. Furthermore, it demonstrates the power of metagenomics to glean large amounts of comparative data regarding both emerging vectors and their pathogens.

     
    more » « less
  4. Abstract

    The malaria parasitePlasmodium relictum(lineage GRW4) was introduced less than a century ago to the native avifauna of Hawaiʻi, where it has since caused major declines of endemic bird populations. One of the native bird species that is frequently infected with GRW4 is the Hawaiʻi ʻamakihi (Chlorodrepanis virens). To achieve a better understanding of the transcriptional activities of this virulent parasite, we performed a controlled challenge experiment of 15 ʻamakihi that were infected with GRW4. Blood samples containing malaria parasites were collected at two time points (intermediate and peak infection stages) from host individuals that were either experimentally infected by mosquitoes or inoculated with infected blood. We then used RNA sequencing to assemble a high‐quality blood transcriptome ofP. relictumGRW4, allowing us to quantify parasite expression levels inside individual birds. We found few significant differences (one to two transcripts) in GRW4 expression levels between host infection stages and between inoculation methods. However, 36 transcripts showed differential expression levels among all host individuals, indicating a potential presence of host‐specific gene regulation across hosts. To reduce the extinction risk of the remaining native bird species in Hawaiʻi, genetic resources of the localPlasmodiumlineage are needed to enable further molecular characterization of this parasite. Our newly built Hawaiian GRW4 transcriptome assembly, together with analyses of the parasite's transcriptional activities inside the blood of Hawaiʻi ʻamakihi, can provide us with important knowledge on how to combat this deadly avian disease in the future.

     
    more » « less
  5. Abstract

    The introduction of nonnative species and reductions in native biodiversity have resulted in substantial changes in vector and host communities globally, but the consequences for pathogen transmission are poorly understood. In lowland Hawaii, bird communities are composed of primarily introduced species, with scattered populations of abundant native species. We examined the influence of avian host community composition, specifically the role of native and introduced species, as well as host diversity, on the prevalence of avian malaria (Plasmodium relictum) in the southern house mosquito (Culex quinquefasciatus). We also explored the reciprocal effect of malaria transmission on native host populations and demography. Avian malaria infection prevalence in mosquitoes increased with the density and relative abundance of native birds, as well as host community competence, but was uncorrelated with host diversity. Avian malaria transmission was estimated to reduce population growth rates of Hawai‘i ʻamakihi (Chlorodrepanis virens) by 7–14%, but mortality from malaria could not explain gaps in this species’ distribution at our sites. Our results suggest that, in Hawaii, native host species increase pathogen transmission to mosquitoes, but introduced species can also support malaria transmission alone. The increase in pathogen transmission with native bird abundance leads to additional disease mortality in native birds, further increasing disease impacts in an ecological feedback cycle. In addition, vector abundance was higher at sites without native birds and this overwhelmed the effects of host community composition on transmission such that infected mosquito abundance was highest at sites without native birds. Higher disease risk at these sites due to higher vector abundance could inhibit recolonization and recovery of native species to these areas. More broadly, this work shows how differences in host competence for a pathogen among native and introduced taxa can influence transmission and highlights the need to examine this question in other systems to determine the generality of this result.

     
    more » « less
  6. Abstract When a novel disease strikes a naïve host population, there is evidence that the most immediate response can involve host evolution while the pathogen remains relatively unchanged. When hosts also live in metapopulations, there may be critical differences in the dynamics that emerge from the synergy among evolutionary, ecological, and epidemiological factors. Here we used a Susceptible-Infected-Recovery model to explore how spatial and temporal ecological factors may drive the epidemiological and rapid-evolutionary dynamics of host metapopulations. For simplicity, we assumed two host genotypes: wild type, which has a positive intrinsic growth rate in the absence of disease, and robust type, which is less likely to catch the infection given exposure but has a lower intrinsic growth rate in the absence of infection. We found that the robust-type host would be strongly selected for in the presence of disease when transmission differences between the two types is large. The growth rate of the wild type had dual but opposite effects on host composition: a smaller increase in wild-type growth increased wild-type competition and lead to periodical disease outbreaks over the first generations after pathogen introduction, while larger growth increased disease by providing more susceptibles, which increased robust host density but decreased periodical outbreaks. Increased migration had a similar impact as the increased differential susceptibility, both of which led to an increase in robust hosts and a decrease in periodical outbreaks. Our study provided a comprehensive understanding of the combined effects among migration, disease epidemiology, and host demography on host evolution with an unchanging pathogen. The findings have important implications for wildlife conservation and zoonotic disease control. 
    more » « less
  7. Abstract Delimiting and describing Plasmodium species in reptiles remains a pressing problem in Haemosporida taxonomy. The few morphological characters used can overlap, and the significance of some life-history traits is not fully understood. Morphologically identical lizard Plasmodium forms have been reported infecting different cell types (red and white blood cells) in the same host and have been considered the same species. An example is Plasmodium tropiduri tropiduri , a species known to infect erythrocytes, thrombocytes and lymphocyte-like cells. Here, both forms of P. t. tropiduri were analysed using light microscope-based morphological characteristics and phylogenetic inferences based on almost complete mitochondrial genomes of parasites naturally infecting lizards in southeastern Brazil. Although morphologically similar, two distinct phylogenetic lineages infecting erythrocytes and non-erythrocytic cells were found. The lineage found in the erythrocytes forms a monophyletic group with species from Colombia. However, the non-erythrocytic lineage shares a recent common ancestor with Plasmodium leucocytica , which infects leucocytes in lizards from the Caribbean islands. Here, Plasmodium ouropretensis n. sp. is described as a species that infects thrombocytes and lymphocyte-like cells. 
    more » « less