Abstract Following the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere‐thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global‐scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption‐induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14–17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X‐pattern in a limited longitudinal area between 20 and 40°W. (c) Thermospheric horizontal winds, especially the zonal winds, showed long‐lasting quasi‐periodic fluctuations between ±200 m/s for 7–8 hr after the passage of volcano‐induced Lamb waves. The EIA suppression and X‐pattern merging was consistent with a westward equatorial zonal dynamo electric field induced by the strong zonal wind oscillation with a westward reversal.
more »
« less
Large‐Scale Traveling Atmospheric and Ionospheric Disturbances Observed in GUVI With Multi‐Instrument Validations
Abstract This study presents multi‐instrument observations of persistent large‐scale traveling ionosphere/atmospheric disturbances (LSTIDs/LSTADs) observed during moderately increased auroral electrojet activity and a sudden stratospheric warming in the polar winter hemisphere. The Global Ultraviolet Imager (GUVI), Gravity field and steady‐state Ocean Circulation Explorer, Scanning Doppler Imaging Fabry–Perot Interferometers, and the Poker Flat Incoherent Scatter Radar are used to demonstrate the presence of LSTIDs/LSTADs between 19 UT and 5 UT on 18–19 January 2013 over the Alaska region down to lower midlatitudes. This study showcases the first use of GUVI for the study of LSTADs. These novel GUVI observations demonstrate the potential for the GUVI far ultraviolet emissions to be used for global‐scale studies of waves and atmospheric disturbances in the thermosphere, a region lacking in long‐term global measurements. These observations typify changes in the radiance from around 140 to 180 km, opening a new window into the behavior of the thermosphere.
more »
« less
- Award ID(s):
- 1936373
- PAR ID:
- 10372219
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 16
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Far ultraviolet observations of Earth's dayglow from the National Aeronautics and Space Administration (NASA) Global‐scale Observations of the Limb and Disk (GOLD) mission presents an unparalleled opportunity for upper atmosphere radiance data assimilation. Assimilation of the Lyman‐Birge‐Hopfield (LBH) band emissions can be formulated in a similar fashion to lower atmosphere radiance data assimilation approaches. To provide a proof‐of‐concept for such an approach, this paper presents assimilation experiments of simulated LBH emission data using an ensemble filter measurement update step implemented with National Oceanic and Atmospheric Administration (NOAA)'s Whole Atmosphere Model (WAM) and National Center for Atmospheric Research (NCAR)'s Global Airglow (GLOW) model. Primary findings from observing system simulation experiments (OSSEs), wherein “truth” atmospheric conditions simulated by NCAR's Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) are used to generate synthetic GOLD data, are as follows: (1) Assimilation of GOLD LBH disk emission data can reduce the bias in model temperature specification (ensemble mean) by 60% under both geomagnetically quiet conditions and disturbed conditions. (2) The reduction in model uncertainty (ensemble spread) as a result of assimilation is about 20% in the lower thermosphere and 30% in the upper thermosphere for both conditions. These OSSEs demonstrate the potential for far ultraviolet radiance data assimilation to dramatically reduce the model biases in thermospheric temperature specification and to extend the utility of GOLD observations by helping to resolve the altitude‐dependent global‐scale response of the thermosphere to geomagnetic storms.more » « less
-
Abstract We examined the source region of dayside large‐scale traveling ionospheric disturbances (LSTIDs) and their relation to cusp energy input. Aurora and total electron content (TEC) observations show that LSTIDs propagate equatorward away from the cusp and demonstrate the cusp region as the source region. Enhanced energy input to the cusp initiated by interplanetary magnetic field (IMF) southward turning triggers the LSTIDs, and each LSTID oscillation is correlated with a TEC enhancement in the dayside oval with tens of minutes periodicity. Equatorward‐propagating LSTIDs are likely gravity waves caused by repetitive heating in the cusp. The cusp source can explain the high LSTID occurrence on the dayside during geomagnetically active times. Poleward‐propagating ΔTEC patterns in the polar cap propagate nearly at the convection speed. While they have similar ΔTEC signatures to gravity wave‐driven LSTIDs, they are suggested to be weak polar cap patches quasiperiodically drifting from the cusp into the polar cap via dayside reconnection.more » « less
-
An earthquake is a seismic event resulting from a sudden release of energy in the lithosphere, which produces waves that can propagate through the atmosphere into the ionosphere, causing ionospheric disturbances, and excites an additional electric field in the lower ionosphere. Two large-scale traveling ionospheric disturbances (LSTIDs) at daytime Turkey longitudes were found, with phase speeds of 534 and 305 m/s, respectively, after the second strong earthquake at 10:24 UT on 6 February 2023. During strong earthquakes, the equatorial ionospheric currents including the E-region equatorial electrojet (EEJ) and F-region ionospheric radial current (IRC) might be perturbed. At the Tatuoca station in Brazil, we observed a stronger-than-usual horizontal magnetic field associated with the EEJ, with a magnitude of ~100 nT. EEJ perturbations are mainly controlled by neutral winds, especially zonal winds. In the equatorial F-region, a wave perturbation of the IRC was caused by a balance of the electric field generated by the zonal winds at ~15° MLat, the F-region local winds driven by atmospheric resonance, and the additional polarization electric field. Our findings better the understanding of the complex interplay between seismic events and ionospheric current disturbances.more » « less
-
Abstract The extraordinary eruption of the Tonga volcano on 15 January 2022 lofted material to heights exceeding 50 km, marking the highest observed since the satellite era. This eruption caused significant disturbances spanning from the hydrosphere up to the thermosphere. Our recent investigation discovered the dramatic thermospheric responses at satellite altitudes. This study, however, provides physical insights into two main possible processes, secondary gravity waves (GWs) and Lamb waves, which may explain those observed large‐scale thermospheric disturbances. The comparison between the simulations and observations suggests that the MESORAC‐HIAMCM secondary GWs are consistent with GRACE‐FO measured global‐propagation thermospheric density disturbances in timing and amplitude. WACCM‐X simulations suggest that the Lamb wave can reach the thermosphere as a sharp, narrow wave packet, and may contribute about 25% to the total disturbances at 510 km.more » « less
An official website of the United States government
