skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pronounced Suppression and X‐Pattern Merging of Equatorial Ionization Anomalies After the 2022 Tonga Volcano Eruption
Abstract Following the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere‐thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global‐scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption‐induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14–17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X‐pattern in a limited longitudinal area between 20 and 40°W. (c) Thermospheric horizontal winds, especially the zonal winds, showed long‐lasting quasi‐periodic fluctuations between ±200 m/s for 7–8 hr after the passage of volcano‐induced Lamb waves. The EIA suppression and X‐pattern merging was consistent with a westward equatorial zonal dynamo electric field induced by the strong zonal wind oscillation with a westward reversal.  more » « less
Award ID(s):
2033787 1952737 2033843
PAR ID:
10373607
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
6
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A coronal mass ejection erupted from the Sun on 21 April 2023 and created a G4 geomagnetic storm on 23 April. NASA's global‐scale observations of the limb and disk (GOLD) imager observed bright equatorial ionization anomaly (EIA) crests at ∼25° Mlat, ∼11° poleward from their average locations, computed by averaging the EIA crests during the previous geomagnetic quiet days (18–22 April) between ∼15°W and 5°W Glon. ReversedC‐shape equatorial plasma bubbles (EPBs) were observed reaching ∼±36° Mlat (∼40°N and ∼30°S Glat) with apex altitudes ∼4,000 km and large westward tilts of ∼52°. Using GOLD's observations EPBs zonal motions are derived. It is observed that the EPBs zonal velocities are eastward near the equator and westward at mid‐latitudes. Model‐predicted prompt penetration electric fields indicate that they may have affected the postsunset pre‐reversal enhancement at equatorial latitudes. Zonal ion drifts from a defense meteorological satellite program satellite suggest that westward neutral winds and perturbed westward ion drifts over mid‐latitudes contributed to the observed latitudinal shear in zonal drifts. 
    more » « less
  2. Abstract The paper presents the effects of the storm‐time prompt penetration electric fields (PPEF) and traveling atmospheric disturbances (TADs) on the total electron content (TEC), foF2 and hmF2 in the American sector (north and south) during the geomagnetic storm on 23–24 April 2023. The data show a poleward shift of the Equatorial Ionization Anomaly (EIA) crests to 18°N and 20°S in the evening of 23 April (attributed to eastward PPEF) and the EIA crests remaining almost in the same latitudes after the PPEF reversed westward. The thermospheric neutral wind velocity, foF2, hmF2, and TEC variations show that TADs from the northern and southern high latitudes propagating equatorward and crossing the equator after midnight on 23 April. The meridional keograms of ΔTEC show the TAD structures in the north/south propagated with phase velocity 470/485 m/s, wave length 4,095/4,016 km and period 2.42/2.30 hr, respectively. The interactions of the TADs also appear to modify the wind velocities in low latitudes. The eastward PPEF and equatorward TADs also favored the development of a clear/not so clear F3 layer in northern/southern regions of the equator. 
    more » « less
  3. Abstract The semidiurnal tidal spectrum in the F‐region ionosphere obtained from hourly COSMIC‐2 Global Ionospheric Specification (GIS) data assimilation is greatly (>50%) enhanced during the January 2021 Sudden Stratospheric Warming (SSW). Moreover, the semidiurnal migrating tidal response in topside electron densities closely follows the day‐to‐day changes of the 10 hPa, 60°N zonal wind from MERRA‐2 during the SSW. The response is similar in the northern and southern crests of the Equatorial Ionization Anomaly (EIA) but persists toward higher magnetic latitudes and the EIA trough. A slight phase shift toward earlier local times is consistent with theoretical expectations of an E‐region dynamo driving and agrees with semidiurnal tidal diagnostics of MIGHTI/ICON zonal winds at 105 km. COSMIC‐2 GIS are the first data set to resolve the tidal weather of the ionosphere on a day‐to‐day basis and, therefore, provide a new perspective on space weather variability driven by lower and middle atmosphere dynamics. 
    more » « less
  4. Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change. 
    more » « less
  5. An earthquake is a seismic event resulting from a sudden release of energy in the lithosphere, which produces waves that can propagate through the atmosphere into the ionosphere, causing ionospheric disturbances, and excites an additional electric field in the lower ionosphere. Two large-scale traveling ionospheric disturbances (LSTIDs) at daytime Turkey longitudes were found, with phase speeds of 534 and 305 m/s, respectively, after the second strong earthquake at 10:24 UT on 6 February 2023. During strong earthquakes, the equatorial ionospheric currents including the E-region equatorial electrojet (EEJ) and F-region ionospheric radial current (IRC) might be perturbed. At the Tatuoca station in Brazil, we observed a stronger-than-usual horizontal magnetic field associated with the EEJ, with a magnitude of ~100 nT. EEJ perturbations are mainly controlled by neutral winds, especially zonal winds. In the equatorial F-region, a wave perturbation of the IRC was caused by a balance of the electric field generated by the zonal winds at ~15° MLat, the F-region local winds driven by atmospheric resonance, and the additional polarization electric field. Our findings better the understanding of the complex interplay between seismic events and ionospheric current disturbances. 
    more » « less