Self-doping is an essential method of increasing carrier concentrations in organic electronics that eliminates the need to tailor host—dopant miscibility, a necessary step when employing molecular dopants. Self-n-doping can be accomplished using amines or ammonium counterions as an electron source, which are being incorporated into an ever-increasingly diverse range of organic materials spanning many applications. Self-n-doped materials have demonstrated exemplary and, in many cases, benchmark performances in a variety of applications. However, an in-depth review of the method is lacking. Perylene diimide (PDI) chromophores are an important mainstay in the semiconductor literature with well-known structure-function characteristics and are also one of the most widely utilized scaffolds for self-n-doping. In this review, we describe the unique properties of self-n-doped PDIs, delineate structure-function relationships, and discuss self-n-doped PDI performance in a range of applications. In particular, the impact of amine/ammonium incorporation into the PDI scaffold on doping efficiency is reviewed with regard to attachment mode, tether distance, counterion selection, and steric encumbrance. Self-n-doped PDIs are a unique set of PDI structural derivatives whose properties are amenable to a broad range of applications such as biochemistry, solar energy conversion, thermoelectric modules, batteries, and photocatalysis. Finally, we discuss challenges and the future outlook of self-n-doping principles.
more »
« less
Establishing Self‐Dopant Design Principles from Structure–Function Relationships in Self‐n‐Doped Perylene Diimide Organic Semiconductors
Abstract Self‐doping is a particular doping method that has been applied to a wide range of organic semiconductors. However, there is a lack of understanding regarding the relationship between dopant structure and function. A structurally diverse series of self‐n‐doped perylene diimides (PDIs) is investigated to study the impact of steric encumbrance, counterion selection, and dopant/PDI tether distance on functional parameters such as doping, stability, morphology, and charge‐carrier mobility. The studies show that self‐n‐doping is best enabled by the use of sterically encumbered ammoniums with short tethers and Lewis basic counterions. Additionally, water is found to inhibit doping, which concludes that thermal degradation is merely a phenomenological feature of certain dopants, and that residual solvent evaporation is the primary driver of thermally activated doping. In situ grazing‐incidence wide‐angle X‐ray scattering studies show that sample annealing increases the π–π stacking distance and shrinks grain boundaries for improved long‐range ordering. These features are then correlated to contactless carrier‐mobility measurements with time‐resolved microwave conductivity before and after thermal annealing. The collective relationships between structural features and functionality are finally used to establish explicit self‐n‐dopant design principles for the future design of materials with improved functionality.
more »
« less
- PAR ID:
- 10372229
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 34
- Issue:
- 42
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aldo R. Boccaccini (Ed.)Monolayer Doping (MLD) is a technique involving the fmmation of a self-assembled dopant-containing layer on the substrate. The dopant is subsequently incorporated into the substrate by annealing, fmming a diffused region. Following MLD, samples were capped with silicon dioxide and rapid the1mal annealed (RTA). In this work, gallium doping using MLD has been demonstrated. Gallium containing compound Tris (2,4 pentanedionato) gallium(III) was synthesized, and shown to be suitable for monolayer doping silicon subsa-ates and deposited thin film polysi!icon. Seconda1y ion mass spectroscopy (SIMS) and spreading resistance probe (SRP) measurements were performed to determine the dopant profiles and dopant elecu-ical activation. TI1ese results showed that a dose of l.6*1015 atoms/cm2 was received, and the gallium dopant produced a 0.2 µm junction in 11-type silicon. For polysilicon, tlle entire 0.4 µm film was evenly doped, witll a concenu-ation greater than 1019 atoms/cm3 tllroughout.more » « less
-
Abstract The development of novel doping strategies compatible with high‐resolution patterning and low cost, large‐scale manufacturing is critical to the future development of electronic devices. Here, an approach to achieve nanoscale site‐specific doping of Si wafer using DNA as both the template and the dopant carrier is reported. Upon thermal treatment, the phosphorous atoms in the DNA diffuse into Si wafer, resulting in doping within the region right around the DNA template. A doping length of 30 nm is achieved for 10 s of thermal treatment at 1000 °C. Prototype field effect transistors are fabricated using the DNA‐doped Si substrate; the device characteristics confirmed that the Si is n‐doped. It is also shown that this approach can be extended to achieve both n‐type and p‐type site‐specific doping of Si by using DNA nanostructures to pattern self‐assembled monolayers. This work shows that the DNA template is a dual‐use template that can both pattern Si and deliver dopants.more » « less
-
Abstract Organic mixed ionic–electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low‐cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n‐dopant, tetrabutylammonium hydroxide (TBA‐OH), and identifying a new design consideration underpinning its success. TBA‐OH behaves as both a chemical n‐dopant and morphology additive in donor acceptor co‐polymer naphthodithiophene diimide‐based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+counterion adopts an “edge‐on” location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped‐OECTs and doped‐OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.more » « less
-
Organic electronics offer a route toward electronically active biocompatible soft materials capable of interfacing with biological and living systems. One class of promising organic electronic materials are π-conjugated peptides, synthetic molecules comprising an aromatic core flanked by oligopeptides, that can be engineered to self-assemble into elongated nanostructures with emergent optoelectronic functionality. In this work, we combine molecular dynamics simulations with electronic structure and charge transport calculations to computationally screen for high charge mobility π-conjugated peptides and to elucidate design rules linking aromatic core character with charge mobility. We consider within our screening library variations in the aromatic core chemistry and length of the alkyl chains connecting the oligopeptide wings to the core. After completing our computational screen we identify particular π-conjugated peptides capable of producing self-assembled biocompatible nanoaggregates with predicted hole mobilities of 0.224 cm^2/(Vs) and electron mobilities of 0.143 cm^2/(Vs), and uncover design rules that enhance understanding of the molecular determinants of charge mobility within π-conjugated peptide assemblies.more » « less
An official website of the United States government
