skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing
Abstract Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.  more » « less
Award ID(s):
2145601 2142789
PAR ID:
10372242
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
39
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology. 
    more » « less
  2. Creating 3D printed structures from materials with shape memory properties allows these structures to change form, modifying configuration or function over time in response to external stimuli such as temperature, light, electrical current, etc. This area of additive manufacturing has come to be known as 4D printing. A variety of geometries have been previously explored in the context of 4D printing, including foldable surfaces (e.g. Origami), lattices, and bio-inspired shapes. However, with advances in solid modeling software tools, more sophisticated spatially- varying lattices are now easily generated to further optimize the mechanical performance and functionality of a 4D printed structure. In this work, complex lattices are created to bend at specific locations with intentionally-reduced stiffness and improved compliance based on locally-reduced strut dimensions. By experimentally demonstrating more complex geometries in the study of 4D printing, new applications can be considered that were not previously possible, with tailored performance allowing for balancing between weight and actuation. 
    more » « less
  3. Abstract Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D‐printed LCEs are thermally actuated. Herein, a 3D‐printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D‐printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near‐infrared (NIR) light (808 nm) at 1.4 W cm−2(corresponding to 160 °C) under optimal printing conditions. The 3D‐printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light‐responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s−1(on a flat surface) and 0.216 mm s−1(on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm). 
    more » « less
  4. Abstract 4D printing is an emerging field where 3D printing techniques are used to pattern stimuli‐responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (E) range of 10−4to 10 MPa during shape change. This restricts the scalability, actuation stress, and load‐bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit anEthat is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self‐sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry is designed and printed that morphs into a 3D self‐standing lifting robot, setting new records for weight‐normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, the ink palette is employed to create and print planar lattice structures that transform into various self‐supporting complex 3D shapes. These contributions are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight. 
    more » « less
  5. Abstract The ability to manufacture highly intricate designs is one of the key advantages of 3D printing. Achieving high dimensional accuracy requires precise, often time‐consuming calibration of the process parameters. Computerized feedback control systems for 3D printing enable sensing and real‐time adaptation and optimization of these parameters at every stage of the print, but multiple challenges remain with sensor embedment and measurement accuracy. In contrast to these active control approaches, here, the authors harness frontal polymerization (FP) to rapidly cure extruded filament in tandem with the printing process. A temperature gradient present along the filament, which is dependent on the printing parameters, can impose control over this exothermic reaction. Experiments and theory reveal a self‐regulative mechanism between filament temperature and cure kinetics that allows the frontal cure speed to autonomously match the print speed. This self‐regulative printing process rapidly adapts to changes in print speed and environmental conditions to produce complex, high‐fidelity structures and freestanding architectures spanning up to 100 mm, greatly expanding the capabilities of direct ink writing (DIW). 
    more » « less