skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D‐Printed Photoresponsive Liquid Crystal Elastomer Composites for Free‐Form Actuation
Abstract Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D‐printed LCEs are thermally actuated. Herein, a 3D‐printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D‐printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near‐infrared (NIR) light (808 nm) at 1.4 W cm−2(corresponding to 160 °C) under optimal printing conditions. The 3D‐printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light‐responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s−1(on a flat surface) and 0.216 mm s−1(on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm).  more » « less
Award ID(s):
2037097 1720530 2104841
PAR ID:
10392274
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
4
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Liquid crystal elastomers (LCEs) are of interest for applications such as soft robotics and shape‐morphing devices. Among the different actuation mechanisms, light offers advantages such as spatial and local control of actuation via the photothermal effect. However, the unwanted aggregation of the light‐absorbing nanoparticles in the LCE matrix will limit the photothermal response speed, actuation performance, and repeatability. Herein, a near‐infrared‐responsive LCE composite consisting of up to 0.20 wt% poly(ethylene glycol)‐modified gold nanorods (AuNRs) without apparent aggregation is demonstrated. The high Young's modulus, 20.3 MPa, and excellent photothermal performance render repeated and fast actuation of the films (actuation within 5 s and recovery in 2 s) when exposed to 800 nm light at an average output power of ≈1.0 W cm−2, while maintaining a large actuation strain (56%). Further, it is shown that the same sheet of AuNR/LCE film (100 µm thick) can be morphed into different shapes simply by varying the motifs of the photomasks. 
    more » « less
  2. Abstract Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices. 
    more » « less
  3. Soft machines will require soft materials that exhibit a rich diversity of functionality, including shape morphing and photoresponsivity. The combination of these functionalities enables useful behaviors in soft machines that can be further developed by synthesizing materials that exhibit localized responsivity. Localized responsivity of liquid crystal elastomers (LCEs), which are soft materials that exhibit shape morphing, can be enabled by formulating composite inks for direct ink writing (DIW). Gold nanorods (AuNRs) can be added to LCEs to enable photothermal shape change upon absorption of light through a localized surface plasmon resonance. We compared LCE formulations, focusing on their amenability for printing by DIW and the photoresponsivity of AuNRs. The local responsivity of different three-dimensional architectures enabled soft machines that could oscillate, crawl, roll, transport mass, and display other unique modes of actuation and motion in response to light, making these promising functional materials for advanced applications. 
    more » « less
  4. Abstract 4D printing is an emerging field where 3D printing techniques are used to pattern stimuli‐responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (E) range of 10−4to 10 MPa during shape change. This restricts the scalability, actuation stress, and load‐bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit anEthat is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self‐sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry is designed and printed that morphs into a 3D self‐standing lifting robot, setting new records for weight‐normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, the ink palette is employed to create and print planar lattice structures that transform into various self‐supporting complex 3D shapes. These contributions are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight. 
    more » « less
  5. Abstract Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption. 
    more » « less