skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Subsurface permeability contrasts control shallow groundwater flow dynamics in the critical zone of a glaciated, headwater catchment
Abstract

Groundwater flow direction within the critical zone of headwater catchments is often assumed to mimic land surface topographic gradients. However, groundwater hydraulic gradients are also influenced by subsurface permeability contrasts, which can result in variability in flow direction and magnitude. In this study, we investigated the relationship between shallow groundwater flow direction, surface topography, and the subsurface topography of low permeability units in a headwater catchment at the Hubbard Brook Experimental Forest (HBEF), NH. We continuously monitored shallow groundwater levels in the solum throughout several seasons in a well network (20 wells of 0.18–1.1 m depth) within the upper hillslopes of Watershed 3 of the HBEF. Water levels were also monitored in four deeper wells, screened from 2.4 to 6.9 m depth within glacial drift of the C horizon. We conducted slug tests across the well network to determine the saturated hydraulic conductivity (Ksat) of the materials surrounding each well. Results showed that under higher water table regimes, groundwater flow direction mimics surface topography, but under lower water table regimes, flow direction can deviate as much as 56 degrees from surface topography. Under these lower water table conditions, groundwater flow direction instead followed the topography of the top of the C horizon. The interquartile range ofKsatwithin the C horizon was two orders of magnitude lower than within the solum. Overall, our results suggest that the land surface topography and the top of the C horizon acted as end members defining the upper and lower bounds of flow direction variability. This suggests that temporal dynamics of groundwater flow direction should be considered when calculating hydrologic fluxes in critical zone and runoff generation studies of headwater catchments that are underlain by glacial drift.

 
more » « less
Award ID(s):
1643327 1637685 1643415
PAR ID:
10372257
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
36
Issue:
9
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Knowing little about how porosity and permeability are distributed at depth, we commonly develop models of groundwater by treating the subsurface as a homogeneous black box even though porosity and permeability vary with depth. One reason for this depth variation is that infiltrating meteoric water reacts with minerals to affect porosity in localized zones called reaction fronts. We are beginning to learn to map and model these fronts beneath headwater catchments and show how they are distributed. The subsurface landscapes defined by these fronts lie subparallel to the soil‐air interface but with lower relief. They can be situated above, below, or at the water table. These subsurface landscapes of reaction are important because porosity developed from weathering can control subsurface water storage. In addition, porosity often changes at the weathering fronts, and when this affects permeability significantly, the front can act like a valve that re‐orients water flowing through the subsurface. We explore controls on the positions of reaction fronts under headwater landscapes by accounting for the timescales of erosion, chemical equilibration, and solute transport. One strong control on the landscape of subsurface reaction is the land surface geometry, which is in turn a function of the erosion rate. In addition, the reaction fronts, like the water table, are strongly affected by the lithology and water infiltration rate. We hypothesize that relationships among the land surface, reaction fronts, and the water table are controlled by feedbacks that can push landscapes towards an ‘ideal hill’. In this steady state, reaction‐front valves partition water volumes into shallow and deep flowpaths. These flows dissolve low‐ and high‐solubility minerals, respectively, allowing their reaction fronts to advance at the erosion rate. This conceptualization could inform better models of subsurface porosity and permeability, replacing the black box.

     
    more » « less
  2. In the low-relief post-glacial landscapes of the Central Lowlands of the United States, fluvial networks formed and expanded following deglaciation despite the low slopes and large fraction of the land surface occupied by closed depressions. Low relief topography allows for subtle surface water divides and increases the likelihood that groundwater divides do not coincide with surface water divides. We investigate how groundwater transfer across subtle surface water divides facilitates channel network expansion using a numerical model built on the Landlab platform. Our model simulates surface and subsurface water routing and fluvial erosion. We consider two end-member scenarios for surface water routing, one in which surface water in closed depressions is forced to connect to basin outlets (routing) and one in which surface water in closed depressions is lost to evapotranspiration (no routing). Groundwater is modeled as fully saturated flow within a confined aquifer. Groundwater emerges as surface water where the landscape has eroded to a specified depth. We held the total water flux constant and varied the fraction of water introduced as groundwater versus precipitation. Channel growth is significantly faster in routing cases than no-routing cases given identical groundwater fractions. In both routing and no-routing cases, channel expansion is fastest when ~30% of the total water enters the system as groundwater. Groundwater contributions also produce distinctive morphology including steepened channel profiles below groundwater seeps. Groundwater head gradients evolve with topography and groundwater-fed channels can grow more quickly than channels with larger surface water catchments. We conclude that rates of channel network growth in low-relief post-glacial areas are sensitive to groundwater contributions. More broadly, our findings suggest that landscape evolution models may benefit from more detailed representation of hydrologic processes. 
    more » « less
  3. Abstract

    Intermittent streams currently constitute >50% of the global river network, and the number of intermittent streams is expected to increase due to changes in land use and climate. Surface flows are known to expand and contract within the headwater channel network due to changes in the water table driven by climate, often changing seasonally. However, the underlying causes of disconnections and reconnections throughout the stream network remain poorly understood and may reflect subsurface flow capacity. We assess how 3D subsurface flowpaths control local surface flows at Gibson Jack Creek in the Rocky Mountains, Idaho, USA. Water table dynamics, hydraulic gradients, and hyporheic exchange were monitored along a 200‐m section of the stream throughout the seasonal recession in WY2018. Shallow lateral hillslope‐riparian‐stream connectivity was more frequent in transects spanning perennially flowing stream reaches than intermittent reaches. During low‐flow periods, larger losing vertical hydraulic gradients were observed in paired piezometers in intermittent reaches than in adjacent perennial reaches. Contrary to dominant conceptual models, longitudinal measurements of hydrologic exchange in both intermittent and perennial reaches were seasonally variable except for one perennial reach that showed consistent significant gains. Observed drying dynamics, as well as subsurface pathways, were highly variable even over short distances (30 m). Flow probability and subsurface flow capacity at upstream locations can be assessed with an outlet hydrograph and upstream flow measurements. Accurate characterization of subsurface storage, discharge, and connection is critical to understanding the drivers of drying cycles in intermittent streams and their likely responses to future change.

     
    more » « less
  4. Abstract

    The western U.S. is experiencing increasing rain to snow ratios due to climate change, and scientists are uncertain how changing recharge patterns will affect future groundwater‐surface water connection. We examined how watershed topography and streambed hydraulic conductivity impact groundwater age and stream discharge at eight sites along a headwater stream within the Manitou Experimental Forest, CO USA. To do so, we measured: (a) continuous stream and groundwater discharge/level and specific conductivity from April to November 2021; (b) biweekly stream and groundwater chemistry; (c) groundwater chlorofluorocarbons and tritium in spring and fall; (d) streambed hydraulic conductivity; and (e) local slope. We used the chemistry data to calculate fluorite saturation states that were used to inform end‐member mixing analysis of streamflow source. We then combined chlorofluorocarbon and tritium data to estimate the age composition of riparian groundwater. Our data suggest that future stream drying is more probable where local slope is steep and streambed hydraulic conductivity is high. In these areas, groundwater source shifted seasonally, as indicated by age increases, and we observed a high fraction of groundwater in streamflow, primarily interflow from adjacent hillslopes. In contrast, where local slope is flat and streambed hydraulic conductivity is low, streamflow is more likely to persist as groundwater age was seasonally constant and buffered by storage in alluvial sediments. Groundwater age and streamflow paired with characterization of watershed topography and subsurface characteristics enabled identification of likely controls on future stream drying patterns.

     
    more » « less
  5. This dataset consists of chemical analyses of subsurface water samples collected from Watershed 3, Hubbard Brook Experimental Forest, Woodstock, NH, USA from 2009-2015. Samples include groundwater samples pumped from monitoring wells, grab samples of natural groundwater seeps, and soil water samples pumped from Prenart lysimeters. For samples from wells where water table was monitored, depth to water table is given. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less