skip to main content


Title: The Significance of Convection in Supraglacial Debris Revealed Through Novel Analysis of Thermistor Profiles
Abstract

Melt from debris‐covered glaciers represents a regionally important freshwater source, especially in high‐relief settings as found in central Asia, Alaska, and South America. Sub‐debris melt is traditionally predicted from surface energy balance models that determine heat conduction through the supraglacial debris layer. Convection is rarely addressed, despite the porous nature of debris. Here we provide the first constraints on convection in supraglacial debris, through the development of a novel method to calculate individual conductive and nonconductive heat flux components from debris temperature profile data. This method was applied to data from Kennicott Glacier, Alaska, spanning two weeks in the summer of 2011 and two months in the summer of 2020. Both heat flux components exhibit diurnal cycles, the amplitude of which is coupled to atmospheric conditions. Mean diurnal nonconductive heat flux peaks at up to 43% the value of conductive heat flux, indicating that failure to account for it may lead to an incorrect representation of melt rates and their drivers. We interpret this heat flux to be dominated by latent heat as debris moisture content changes on a diurnal cycle. A sharp afternoon drop‐off in nonconductive heat flux is observed at shallow depths as debris dries. We expect these processes to be relevant for other debris‐covered glaciers. Debris properties such as porosity and tortuosity may play a large role in modulating it. Based on the present analysis, we recommend further study of convection in supraglacial debris for glaciers across the globe with different debris properties.

 
more » « less
NSF-PAR ID:
10372264
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
127
Issue:
9
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Debris‐covered glaciers (DCG) and rock glaciers have been increasingly studied in recent years because of the role they play within local watersheds, glacial ablation models due to climate change, and as analogs for buried ice features on planetary bodies such as Mars. Characterizing the supraglacial debris layer is a large part of these efforts. Geophysical exploration of DCG has mostly excluded active seismic methods, with the exception of refraction studies, due to the attenuating properties of the debris cover and field survey efficiency. We evaluate the accuracy, field efficiency, and effectiveness of seismic refraction, reflection, and surface‐wave surveys for determining the elastic properties of the debris layer and any underlying layers on DCG using the Sourdough Rock Glacier in Southcentral Alaska as a test site. We provide evidence for imaging an ultra‐shallow seismic reflection from the bottom of the loose debris layer using ultra‐dense receiver arrays and compare it to ground‐penetrating radar (GPR) images taken along the same profiles. We also detail how reliable dispersion curve images can be extracted from the surface wave package of the seismic data using the multi‐channel analysis of surface waves technique, which allows for the (s)‐wave profile to be inverted for. We find this could be a valuable addition to the toolbox of future geophysical investigations on DCG.

     
    more » « less
  2. Debris-covered glaciers (DCGs) are globally distributed and thought to contain greater microbial diversity than clean surface continental glaciers, but the ecological characteristics of microbial communities on the surface of DCGs have remained underexplored. Here, we investigated bacterial and fungal diversity and co-occurrence networks on the supraglacial debris habitat of two DCGs (Hailuogou and Dagongba Glaciers) in the southeastern Tibetan Plateau. We found that the supraglacial debris harbored abundant microbes with Proteobacteria occupying more than half (51.5%) of the total bacteria operational taxonomic units. The composition, diversity, and co-occurrence networks of both bacterial and fungal communities in the debris were significantly different between Hailuogou Glacier and Dagongba Glacier even though the glaciers are geographically adjacent within the same mountain range. Bacteria were more diverse in the debris of the Dagongba Glacier, where a lower surface velocity and thicker debris layer allowed the supraglacial debris to continuously weather and accumulate nutrients. Fungi were more diverse in the debris of the Hailuogou Glacier, which experiences a wetter monsoonal climate, is richer in calcium, has greater debris instability, and greater ice velocity than the Dagongba Glacier. These factors may provide ideal conditions for the dispersal and propagation of fungi spores on the Hailuogou Glacier. In addition, we found an obvious gradient of bacterial diversity along the supraglacial debris transect on the Hailuogou Glacier. Bacterial diversity was lower where debris cover was thin and scattered and became more diverse near the glacial terminus in thick, slow-moving debris. No such increasing bacterial pattern was detected on the Dagongba Glacier, which implies a positive relationship of debris age, thickness, and weathering on bacterial diversity. Additionally, a highly connected bacterial co-occurrence network with low modularity was found in the debris of the Hailuogou Glacier. In contrast, debris from the Dagongba Glacier exhibited less connected but more modularized co-occurrence networks of both bacterial and fungal communities. These findings indicate that less disturbed supraglacial debris conditions are crucial for microbes to form stable communities on DCGs. 
    more » « less
  3. null (Ed.)
    ABSTRACT Surface debris covers much of the western portion of the McMurdo Ice Shelf and has a strong influence on the local surface albedo and energy balance. Differential ablation between debris-covered and debris-free areas creates an unusual heterogeneous surface of topographically low, high-ablation, and topographically raised (‘pedestalled’), low-ablation areas. Analysis of Landsat and MODIS satellite imagery from 1999 to 2018, alongside field observations from the 2016/2017 austral summer, shows that pedestalled relict lakes (‘pedestals’) form when an active surface meltwater lake that develops in the summer, freezes-over in winter, resulting in the lake-bottom debris being masked by a high-albedo, superimposed, ice surface. If this ice surface fails to melt during a subsequent melt season, it experiences reduced surface ablation relative to the surrounding debris-covered areas of the ice shelf. We propose that this differential ablation, and resultant hydrostatic and flexural readjustments of the ice shelf, causes the former supraglacial lake surface to become increasingly pedestalled above the lower topography of the surrounding ice shelf. Consequently, meltwater streams cannot flow onto these pedestalled features, and instead divert around them. We suggest that the development of pedestals has a significant influence on the surface-energy balance, hydrology and flexure of the ice shelf. 
    more » « less
  4. We use reanalysis data and satellite remote sensing of cloud properties to examine how meteorological conditions alter the surface energy balance to cause surface melt that is detectable in satellite passive microwave imagery over West Antarctica. This analysis can detect each of the three primary mechanisms for inducing surface melt at a specific location: thermal blanketing involving sensible heat flux and/or longwave heating by optically thick cloud cover, all-wave radiative enhancement by optically thin cloud cover, and föhn winds. We examine case studies over Pine Island and Thwaites Glaciers, which are of interest for ice shelf and ice sheet stability, and over Siple Dome, which is more readily accessible for field work. During January 2015 over Siple Dome we identified a melt event whose origin is an all-wave radiative enhancement by optically thin clouds. During December 2011 over Pine Island and Thwaites Glaciers, we identified a melt event caused mainly by thermal blanketing from optically thick clouds. Over Siple Dome, those same 2011 synoptic conditions yielded a thermal blanketing-driven melt event that was initiated by an impulse of sensible heat flux then prolonged by cloud longwave heating. In contrast, a late-summer thermal blanketing period over Pine Island and Thwaites Glaciers during February 2013 showed surface melt initiated by cloud longwave heating then prolonged by enhanced sensible heat flux. At a location on the Ross Ice Shelf adjacent to the Transantarctic mountains we identified a December 2011 föhn wind case with additional support from automatic weather station data. One limitation thus far with this type of analysis involves uncertainties in the cloud optical properties. Nevertheless, with improvements this type of analysis can enable quantitative prediction of atmospheric stress on the vulnerable Antarctic ice shelves in a steadily warming climate. 
    more » « less
  5. Abstract

    Fjords are conduits for heat and mass exchange between tidewater glaciers and the coastal ocean, and thus regulate near‐glacier water properties and submarine melting of glaciers. Entrainment into subglacial discharge plumes is a primary driver of seasonal glacial fjord circulation; however, outflowing plumes may continue to influence circulation after reaching neutral buoyancy through the sill‐driven mixing and recycling, or reflux, of glacial freshwater. Despite its importance in non‐glacial fjords, no framework exists for how freshwater reflux may affect circulation in glacial fjords, where strong buoyancy forcing is also present. Here, we pair a suite of hydrographic observations measured throughout 2016–2017 in LeConte Bay, Alaska, with a three‐dimensional numerical model of the fjord to quantify sill‐driven reflux of glacial freshwater, and determine its influence on glacial fjord circulation. When paired with subglacial discharge plume‐driven buoyancy forcing, sill‐generated mixing drives distinct seasonal circulation regimes that differ greatly in their ability to transport heat to the glacier terminus. During the summer, 53%–72% of the surface outflow is refluxed at the fjord's shallow entrance sill and is subsequently re‐entrained into the subglacial discharge plume at the fjord head. As a result, near‐terminus water properties are heavily influenced by mixing at the entrance sill, and circulation is altered to draw warm, modified external surface water to the glacier grounding line at 200 m depth. This circulatory cell does not exist in the winter when freshwater reflux is minimal. Similar seasonal behavior may exist at other glacial fjords throughout Southeast Alaska, Patagonia, Greenland, and elsewhere.

     
    more » « less