Fractures in Earth's critical zone influence groundwater flow and storage and promote chemical weathering. Fractured materials are difficult to characterize on large spatial scales because they contain fractures that span a range of sizes, have complex spatial distributions, and are often inaccessible. Therefore, geophysical characterizations of the critical zone depend on the scale of measurements and on the response of the medium to impulses at that scale. Using P-wave velocities collected at two scales, we show that seismic velocities in the fractured bedrock layer of the critical zone are scale-dependent. The smaller-scale velocities, derived from sonic logs with a dominant wavelength of ~0.3 m, show substantial vertical and lateral heterogeneity in the fractured rock, with sonic velocities varying by 2,000 m/s over short lateral distances (~20 m), indicating strong spatial variations in fracture density. In contrast, the larger-scale velocities, derived from seismic refraction surveys with a dominant wavelength of ~50 m, are notably slower than the sonic velocities (a difference of ~3,000 m/s) and lack lateral heterogeneity. We show that this discrepancy is a consequence of contrasting measurement scales between the two methods; in other words, the contrast is not an artifact but rather information—the signature of a fractured medium (weathered/fractured bedrock) when probed at vastly different scales. We explore the sample volumes of each measurement and show that surface refraction velocities provide reliable estimates of critical zone thickness but are relatively insensitive to lateral changes in fracture density at scales of a few tens of meters. At depth, converging refraction and sonic velocities likely indicate the top of unweathered bedrock, indicative of material with similar fracture density across scales.
more »
« less
Active Seismic Refraction, Reflection, and Surface‐Wave Surveys in Thick Debris‐Covered Glacial Environments
Abstract Debris‐covered glaciers (DCG) and rock glaciers have been increasingly studied in recent years because of the role they play within local watersheds, glacial ablation models due to climate change, and as analogs for buried ice features on planetary bodies such as Mars. Characterizing the supraglacial debris layer is a large part of these efforts. Geophysical exploration of DCG has mostly excluded active seismic methods, with the exception of refraction studies, due to the attenuating properties of the debris cover and field survey efficiency. We evaluate the accuracy, field efficiency, and effectiveness of seismic refraction, reflection, and surface‐wave surveys for determining the elastic properties of the debris layer and any underlying layers on DCG using the Sourdough Rock Glacier in Southcentral Alaska as a test site. We provide evidence for imaging an ultra‐shallow seismic reflection from the bottom of the loose debris layer using ultra‐dense receiver arrays and compare it to ground‐penetrating radar (GPR) images taken along the same profiles. We also detail how reliable dispersion curve images can be extracted from the surface wave package of the seismic data using the multi‐channel analysis of surface waves technique, which allows for the (s)‐wave profile to be inverted for. We find this could be a valuable addition to the toolbox of future geophysical investigations on DCG.
more »
« less
- Award ID(s):
- 1929577
- PAR ID:
- 10483813
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 129
- Issue:
- 1
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rock glaciers dominate the cryosphere in mid‐latitude alpine settings, yet their activity and their histories remain challenging to constrain. We focus on the Thomas Lake rock glacier on Mt. Sopris in Colorado, USA. We measure surface velocities by feature tracking of image pairs and document Holocene10Be exposure ages on surface debris. The surface speeds average 0.8 m/yr and peak at 2 m/yr in a steep reach. Exposure ages range from 1.4 to 13.2 kyr and monotonically increase down‐glaciers. Ages exceeding 6 kyr occur in the bottom quarter of the landform, coinciding with sporadic tree cover. These constraints constrain a numerical model of Holocene rock glacier activity. In our model, surface velocity is entirely explained by the deformation of the ice‐rich core with the extra load of the rocky carapace. Surface mass balance is simplified to an accumulation area of ice and debris equivalent to the avalanche cone, and very low, uniform ablation in the remaining rock glacier where rock cover minimizes melt. Climate drives the activity through a history of ice accumulation in the avalanche cone. Matching the observed age and speed structure requires: (a) Early Holocene growth of the rock glacier, (b) low accumulation during the middle Holocene warm period (Hypsithermal), and (c) two Neoglacial accumulation pulses, the most recent being the Little Ice Age. Pulses travel down the valley as kinematic waves, re‐activating the landform. The headwall retreat rate of 4 mm/yr, inferred from rocky layer thickness and surface speed, far outpaces bedrock down wearing rates.more » « less
-
Melt from debris-covered glaciers represents a regionally important freshwater source, especially in high-relief settings as found in central Asia, Alaska, and South America. Sub-debris melt is traditionally predicted from surface energy balance models that determine heat conduction through the supraglacial debris layer. Convection is rarely addressed, despite the porous nature of debris. Here we provide the first constraints on convection in supraglacial debris, through the development of a novel method to calculate individual conductive and nonconductive heat flux components from debris temperature profile data. This method was applied to data from Kennicott Glacier, Alaska, spanning two weeks in the summer of 2011 and two months in the summer of 2020. Both heat flux components exhibit diurnal cycles, the amplitude of which is coupled to atmospheric conditions. Mean diurnal nonconductive heat flux peaks at up to 43% the value of conductive heat flux, indicating that failure to account for it may lead to an incorrect representation of melt rates and their drivers. We interpret this heat flux to be dominated by latent heat as debris moisture content changes on a diurnal cycle. A sharp afternoon drop-off in nonconductive heat flux is observed at shallow depths as debris dries. We expect these processes to be relevant for other debris-covered glaciers. Debris properties such as porosity and tortuosity may play a large role in modulating it. Based on the present analysis, we recommend further study of convection in supraglacial debris for glaciers across the globe with different debris properties.more » « less
-
Abstract The advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.more » « less
-
We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels effect. This is observed as a shift in the resonant angle of the grating (i.e., Δϕ), which can be related to the change in the local index of refraction of the electrolyte (i.e., Δnlocal). The reflection modulation of the IL is compared against a polar (D2O) and a non-polar solvent (benzene) to confirm the electro-optic origin of resonance shift. The electrostatic accumulation of ions from the IL induces local index changes to the gratings over the extent of electrical double layer (EDL) thickness. Finite difference time domain simulations are used to relate the observed shifts in the plasmon resonance and change in reflection to the change in the local index of refraction of the electrolyte and the thickness of the EDL. Simultaneously using the wavelength and intensity shift of the resonance enables us to determine both the effective thickness and Δn of the double layer. We believe that this technique can be used more broadly, allowing the dynamics associated with the potential-induced ordering and rearrangement of ionic species in electrode–solution interfaces.more » « less
An official website of the United States government
