Abstract Arid and semiarid ecosystems around the world are often prone to both soil salinization and accelerated soil erosion by wind. Soil salinization, the accumulation of salts in the shallow portions of the soil profile, is known for its ability to decreases soil fertility and inhibit plant growth. However, the effect of salts on soil erodibility by wind and the associated dust emissions in the early stages of soil salinization (low salinity conditions) remains poorly understood. Here we use wind tunnel tests to detect the effects of soil salinity on the threshold velocity for wind erosion and dust production in dry soils with different textures treated with salt‐enriched water at different concentrations. We find that the threshold velocity for wind erosion increases with soil salinity. We explain this finding as the result of salt‐induced (physical) aggregation and soil crust formation, and the increasing strength of surface soil crust with increasing soil salinity, depending on soil texture. Even though saline soils showed resistance to wind erosion in the absence of abraders, the salt crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions compared to non‐saline soils. Interestingly, the salinity of the emitted dust is found to be significantly higher (5–10 times more) than that of the parent soil, suggesting that soil salts are preferentially emitted, and airborne dust is enriched of salts.
more »
« less
Formulating Zwitterionic, Responsive Polymers for Designing Smart Soils
Abstract The design of new remediation strategies and materials for treating saline–alkaline soils is of fundamental and practical importantance for many applications. Conventional soil remediation strategies mainly focus on the development of fertilizers or additives for water, nutrient, and heavy metal managements in soils, but they often overlook a soil sensing function for early detection of salinization/alkalization levels toward optimal and timely soil remediation. Here, new smart soils, structurally consisting of the upper signal soil and the bottom hygroscopic bed and chemically including zwitterionic, thermo‐responsive poly(NIPAM‐co‐VPES) and poly(NIPAM‐co‐SBAA) aerogels in each soil layer are formulated. Upon salinization, the resultant smart soils exhibit multiple superior capacities for reducing the soil salinity and alkalinity through ion exchange, controlling the water cycling, modulating the degradation of pyridine‐base ligands into water‐soluble, nitrogenous salts‐rich ingredients for soil fertility, and real‐time monitoring salinized soils via pH‐induced allochroic color changes. Further studies of plant growth in smart soils with or without salinization treatments confirm a synergy effect of soil remediation and soil sensing on facilitating the growth of plants and increasing the saline–alkaline tolerance of plants. The esign concept of smart soils can be further expanded for soil remediation and assessment.
more »
« less
- Award ID(s):
- 1806138
- PAR ID:
- 10372278
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 38
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soil salinization is an increasing global problem, especially in agricultural, coastal, and roadside environments. The increasing intensity of precipitation events due to climate change may be exacerbating these effects, such as through larger pulses of deicing salts entering roadside green stormwater infrastructure (GSI) and stronger coastal storms bringing seawater further inland. Although soils are often amended with biochar to remove pollutants and improve hydraulic properties, it may also mitigate the impact of salinity. Here, we compared the water retention properties and unsaturated hydraulic conductivities of both biochar-amended and unamended GSI soil media with varying salinity levels (1-25 dS m-1, using Na+ salts). The effects of salinity on both matric and osmotic potential included shifts in the plant-available water range, with the magnitude depending on the salt concentration and biochar content. Overall, biochar addition decreased the salinity and improved plant water availability in salt-affected soils. There was an increase in the integral water capacity (which describes the total amount of water the soil media can hold and release to a plant) for biochar-amended saline soils, demonstrating that biochar can reduce the total osmo-matric stress. On a macro scale, the high density of pores in biochar appears to increase soil hydraulic conductivity while reducing osmotic potential by adsorbing salt ions. On a micro scale, the negative surface charge of biochar likely counteracts the impact of the electric double layer of saline soils, reducing the total osmo-matric force on water molecules in soil solution. In effect, this helps the plant's osmotic potential to overcome the forces holding water molecules to soil grains. As soils become more saline due to ongoing climate-related snow events, biochar application might be an effective management technique for roadside and other saline soils.more » « less
-
Abstract Drylands are unique among terrestrial ecosystems in that they have a significant proportion of primary production facilitated by non‐vascular plants such as colonial cyanobacteria, moss, and lichens, i.e., biocrusts, which occur on and in the surface soil. Biocrusts inhabit all continents, including Antarctica, an increasingly dynamic continent on the precipice of change. Here, we describe in‐situ field surveying and sampling, remote sensing, and modeling approaches to assess the habitat suitability of biocrusts in the Lake Fryxell basin of Taylor Valley, Antarctica, which is the main site of the McMurdo Dry Valleys Long‐Term Ecological Research Program. Soils suitable for the development of biocrusts are typically wetter, less alkaline, and less saline compared to unvegetated soils. Using random forest models, we show that gravimetric water content, electrical conductivity, and snow frequency are the top predictors of biocrust presence and biomass. Areas most suitable for the growth of dense biocrusts are soils associated with seasonal snow patches. Using geospatial data to extrapolate our habitat suitability model to the whole basin predicts that biocrusts are present in 2.7 × 105m2and contain 11–72 Mg of aboveground carbon, based on the 90% probability of occurrence. Our study illustrates the synergistic effect of combining field and remote sensing data for understanding the distribution and biomass of biocrusts, a foundational community in the carbon balance of this region. Extreme weather events and changing climate conditions in this region, especially those influencing snow accumulation and persistence, could have significant effects on the future distribution and abundance of biocrusts and therefore soil organic carbon storage in the McMurdo Dry Valleys.more » « less
-
Stimuli-responsive polymers functionalized with reactive inorganic groups enable creation of macromolecular structures such as hydrogels, micelles, and coatings that demonstrate smart behavior. Prior studies using poly( N -isopropyl acrylamide- co -3-(trimethoxysilyl)propyl methacrylate) (P(NIPAM- co -TMA)) have stabilized micelles and produced functional nanoscale coatings; however, such systems show limited responsiveness over multiple thermal cycles. Here, polymer architecture and TMA content are connected to the aqueous self-assembly, optical response, and thermoreversibility of two distinct types of PNIPAM/TMA copolymers: random P(NIPAM- co -TMA), and a ‘blocky-functionalized’ copolymer where TMA is localized to one portion of the chain, P(NIPAM- b -NIPAM- co -TMA). Aqueous solution behavior characterized via cloud point testing (CPT), dynamic light scattering (DLS), and variable-temperature nuclear magnetic resonance spectroscopy (NMR) demonstrates that thermoresponsiveness and thermoreversibility over multiple cycles is a strong function of polymer configuration and TMA content. Despite low TMA content (≤2 mol%), blocky-functionalized copolymers assemble into small, well-ordered structures above the cloud point that lead to distinct transmittance behaviors and stimuli-responsiveness over multiple cycles. Conversely, random copolymers form disordered aggregates at elevated temperatures, and only exhibit thermoreversibility at negligible TMA fractions (0.5 mol%); higher TMA content leads to irreversible structure formation. This understanding of the architectural and assembly effects on the thermal cyclability of aqueous PNIPAM- co -TMA can be used to improve the scalability of responsive polymer applications requiring thermoreversible behavior, including sensing, separations, and functional coatings.more » « less
-
Abstract Ecosystem functional responses such as soil CO2emissions are constrained by microclimate, available carbon (C) substrates and their effects upon microbial activity. In tropical forests, phosphorus (P) is often considered as a limiting factor for plant growth, but it is still not clear whether P constrains microbial CO2emissions from soils. In this study, we incubated seven tropical forest soils from Brazil and Puerto Rico with different nutrient addition treatments (no addition, Control; C, nitrogen (N) or P addition only; and combined C, N and P addition (CNP)). Cumulative soil CO2emissions were fit with a Gompertz model to estimate potential maximum cumulative soil CO2emission (Cm) and the rate of change of soil C decomposition (k). Quantitative polymerase chain reaction (qPCR) was conducted to quantify microbial biomass as bacteria and fungi. Results showed that P addition alone or in combination with C and N enhancedCm, whereas N addition usually reducedCm, and neither N nor P affected microbial biomass. Additions of CNP enhancedk, increased microbial abundances and altered fungal to bacterial ratios towards higher fungal abundance. Additions of CNP, however, tended to reduceCmfor most soils when compared to C additions alone, suggesting that microbial growth associated with nutrient additions may have occurred at the expense of C decomposition. Overall, this study demonstrates that soil CO2emission is more limited by P than N in tropical forest soils and those effects were stronger in soils low in P. HighlightsA laboratory incubation study was conducted with nitrogen, phosphorus or carbon addition to tropical forest soils. Soil CO2emission was fitted with a Gompertz model and soil microbial abundance was quantified using qPCR. Phosphorus addition increased model parametersCmand soil CO2emission, particularly in the Puerto Rico soils. Soil CO2emission was more limited by phosphorus than nitrogen in tropical forest soils.more » « less
An official website of the United States government
