skip to main content


Title: Inferring the Neutron Star Maximum Mass and Lower Mass Gap in Neutron Star–Black Hole Systems with Spin
Abstract

Gravitational-wave (GW) detections of merging neutron star–black hole (NSBH) systems probe astrophysical neutron star (NS) and black hole (BH) mass distributions, especially at the transition between NS and BH masses. Of particular interest are the maximum NS mass, minimum BH mass, and potential mass gap between them. While previous GW population analyses assumed all NSs obey the same maximum mass, if rapidly spinning NSs exist, they can extend to larger maximum masses than nonspinning NSs. In fact, several authors have proposed that the ∼2.6Mobject in the event GW190814—either the most massive NS or least massive BH observed to date—is a rapidly spinning NS. We therefore infer the NSBH mass distribution jointly with the NS spin distribution, modeling the NS maximum mass as a function of spin. Using four LIGO–Virgo NSBH events including GW190814, if we assume that the NS spin distribution is uniformly distributed up to the maximum (breakup) spin, we infer the maximum nonspinning NS mass is2.70.4+0.5M(90% credibility), while assuming only nonspinning NSs, the NS maximum mass must be >2.53M(90% credibility). The data support the mass gap’s existence, with a minimum BH mass at5.41.0+0.7M. With future observations, under simplified assumptions, 150 NSBH events may constrain the maximum nonspinning NS mass to ±0.02M, and we may even measure the relation between the NS spin and maximum mass entirely from GW data. If rapidly rotating NSs exist, their spins and masses must be modeled simultaneously to avoid biasing the NS maximum mass.

 
more » « less
Award ID(s):
1944412
NSF-PAR ID:
10372294
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
937
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 73
Size(s):
["Article No. 73"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We search for features in the mass distribution of detected compact binary coalescences which signify the transition between neutron stars (NSs) and black holes (BHs). We analyze all gravitational-wave (GW) detections by the LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (LVK) made through the end of the first half of the third observing run, and find clear evidence for two different populations of compact objects based solely on GW data. We confidently (99.3%) find a steepening relative to a single power law describing NSs and low-mass BHs below2.40.5+0.5M, which is consistent with many predictions for the maximum NS mass. We find suggestions of the purported lower mass gap between the most massive NSs and the least massive BHs, but are unable to conclusively resolve it with current data. If it exists, we find the lower mass gap’s edges to lie at2.20.5+0.7Mand6.01.4+2.4M. We reexamine events that have been deemed “exceptional” by the LVK collaborations in the context of these features. We analyze GW190814 self-consistently in the context of the full population of compact binaries, finding support for its secondary to be either a NS or a lower mass gap object, consistent with previous claims. Our models are the first to accommodate this event, which is an outlier with respect to the binary BH population. We find that GW200105 and GW200115 probe the edges of, and may have components within, the lower mass gap. As future data improve global population models, the classification of these events will also improve.

     
    more » « less
  2. Abstract

    We measure the correlation between black hole massMBHand host stellar massM*for a sample of 38 broad-line quasars at 0.2 ≲z≲ 0.8 (median redshiftzmed= 0.5). The black hole masses are derived from a dedicated reverberation mapping program for distant quasars, and the stellar masses are derived from two-band optical+IR Hubble Space Telescope imaging. Most of these quasars are well centered within ≲1 kpc from the host galaxy centroid, with only a few cases in merging/disturbed systems showing larger spatial offsets. Our sample spans two orders of magnitude in stellar mass (∼109–1011M) and black hole mass (∼107–109M) and reveals a significant correlation between the two quantities. We find a best-fit intrinsic (i.e., selection effects corrected)MBHM*,hostrelation oflog(MBH/M)=7.010.33+0.23+1.740.64+0.64log(M*,host/1010M), with an intrinsic scatter of0.470.17+0.24dex. Decomposing our quasar hosts into bulges and disks, there is a similarMBHM*,bulgerelation with slightly larger scatter, likely caused by systematic uncertainties in the bulge–disk decomposition. TheMBHM*,hostrelation atzmed= 0.5 is similar to that in local quiescent galaxies, with negligible evolution over the redshift range probed by our sample. With direct black hole masses from reverberation mapping and the large dynamical range of the sample, selection biases do not appear to affect our conclusions significantly. Our results, along with other samples in the literature, suggest that the locally measured black hole mass–host stellar mass relation is already in place atz∼ 1.

     
    more » « less
  3. Abstract

    We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (MBH) with host galaxy scaling relations, showing that the sampleMBHranges from 105.1Mto 108.2M. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg-band luminosity function can be well described by a broken power law ofϕ(Lg)Lg/Lbk0.3+Lg/Lbk2.61, withLbk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (MBH/M) ≲ 107.3, the TDE mass function followsϕ(MBH)MBH0.25, which favors a flat local BH mass function (dnBH/dlogMBHconstant). We confirm the significant rate suppression at the high-mass end (MBH≳ 107.5M), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofMgal∼ 1010M, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors.

     
    more » « less
  4. Abstract

    Mass measurements from low-mass black hole X-ray binaries (LMXBs) and radio pulsars have been used to identify a gap between the most massive neutron stars (NSs) and the least massive black holes (BHs). BH mass measurements in LMXBs are typically only possible for transient systems: outburst periods enable detection via all-sky X-ray monitors, while quiescent periods enable radial velocity measurements of the low-mass donor. We quantitatively study selection biases due to the requirement of transient behavior for BH mass measurements. Using rapid population synthesis simulations (COSMIC), detailed binary stellar-evolution models (MESA), and the disk instability model of transient behavior, we demonstrate that transient LMXB selection effects introduce observational biases, and can suppress mass-gap BHs in the observed sample. However, we find a population of transient LMXBs with mass-gap BHs form through accretion-induced collapse of an NS during the LMXB phase, which is inconsistent with observations. These results are robust against variations of binary evolution prescriptions. The significance of this accretion-induced collapse population depends upon the maximum NS birth massMNS,birthmax. To reflect the observed dearth of low-mass BHs,COSMICandMESAmodels favorMNS,birthmax2M. In the absence of further observational biases against LMXBs with mass-gap BHs, our results indicate the need for additional physics connected to the modeling of LMXB formation and evolution.

     
    more » « less
  5. Abstract

    There are expected to be ∼108isolated black holes (BHs) in the Milky Way. OGLE-2011-BLG-0462/MOA-2011-BLG-191 (OB110462) is the only such BH with a mass measurement to date. However, its mass is disputed: Lam et al. measured a lower mass of 1.6–4.4M, while Sahu et al. and Mróz et al. measured a higher mass of 5.8–8.7M. We reanalyze OB110462, including new data from the Hubble Space Telescope (HST) and rereduced Optical Gravitational Lensing Experiment (OGLE) photometry. We also rereduce and reanalyze the HST data set with newly available software. We find significantly different (∼1 mas) HST astrometry than Lam et al. in the unmagnified epochs due to the amount of positional bias induced by a bright star ∼0.″4 from OB110462. After modeling the updated photometric and astrometric data sets, we find the lens of OB110462 is a6.01.0+1.2MBH. Future observations with the Nancy Grace Roman Space Telescope, which will have an astrometric precision comparable or better to HST but a field of view 100× larger, will be able to measure hundreds of isolated BH masses via microlensing. This will enable the measurement of the BH mass distribution and improve understanding of massive stellar evolution and BH formation channels.

     
    more » « less