skip to main content


Title: Temperature and pH mediate stoichiometric constraints of organically derived soil nutrients
Abstract

It remains unclear how warming will affect resource flows during soil organic matter (SOM) decomposition, in part due to uncertainty in how exoenzymes produced by microbes and roots will function. Rising temperatures can enhance the activity of most exoenzymes, but soil pH can impose limitations on their catalytic efficiency. The effects of temperature and pH on enzyme activity are often examined in environmental samples, but purified enzyme kinetics reveal fundamental attributes of enzymes’ intrinsic temperature responses and how relative release of decay‐liberated resources (their flow ratios) can change with environmental conditions. In this paper, we illuminate the principle that fundamental, biochemical limitations on SOM release of C, N, and P during decay, and differential exoenzymes’ responses to the environment, can exert biosphere‐scale significance on the stoichiometry of bioavailable soil resources. To that end, we combined previously published intrinsic temperature sensitivities of two hydrolytic enzymes that release C and N during decay with a novel data set characterizing the kinetics of a P‐releasing enzyme (acid phosphatase) across an ecologically relevant pH gradient. We use these data to estimate potential change in the flow ratios derived from these three enzymes’ activities (C:N, C:P, and N:P) at the global scale by the end of the century, based on temperature projections and soil pH distribution. Our results highlight how the temperature sensitivity of these hydrolytic enzymes and the influence of pH on that sensitivity can govern the relative availability of bioavailable resources derived from these enzymes. The work illuminates the utility of weaving well‐defined kinetic constraints of microbes’ exoenzymes into models that incorporate changing SOM inputs and composition, nutrient availability, and microbial functioning into their efforts to project terrestrial ecosystem functioning in a changing climate.

 
more » « less
Award ID(s):
1656006
NSF-PAR ID:
10372348
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
28
Issue:
4
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1630-1642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peña-Fernández, Antonio (Ed.)
    Application of crop residues and biochar have been demonstrated to improve soil biological and chemical properties in agroecosystems. However, the integrated effect of organic amendments and hydrological cycles on soil health indicators are not well understood. In this study, we quantified the impact of hemp residue (HR), hemp biochar (HB), and hardwood biochar (HA) on five hydrolytic enzymes, soil microbial phospholipid (PLFA) community structure, pH, permanganate oxidizable carbon (POXC) soil organic carbon (SOC), and total nitrogen (TN). We compared two soil types, Piedmont and Coastal Plain soils of North Carolina, under (i) a 30-d moisture cycle maintained at 60% water-filled pore space (WFPS) (D-W1), followed by (ii) a 7-day alternate dry-wet cycle for 42 days (D-W2), or (iii) maintained at 60% WFPS for 42 days (D-W3) during an aerobic laboratory incubation. Results showed that HR and HB significantly increased the geometric mean enzyme activity by 1-2-fold in the Piedmont soil under the three moisture cycles and about 1.5-fold under D-W in the Coastal soil. In the presence of HA, the measured soil enzyme activities were significantly lower than control under the moisture cycles in both soil types. The shift in microbial community structure was distinct in the Coastal soil but not in the Piedmont soil. Under D-W2, HR and HB significantly increased POXC (600–700 mg POXC kg -1 soil) in the Coastal soil but not in the Piedmont soil while HA increased nitrate (8 mg kg -1 ) retention in the Coastal soil. The differences in amendment effect on pH SOC, TN, POXC, and nitrate were less distinct in the fine-textured Piedmont soil than the coarse-textured Coastal soil. Overall, the results indicate that, unlike HA, HR and HB will have beneficial effects on soil health and productivity, therefore potentially improving soil’s resilience to changing climate. 
    more » « less
  2. Abstract

    The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivities of soil microbial processes. Enzymatic rates could increase at higher temperatures, but this response could change over time if soil microbes adapt to warming. We used the Arrhenius relationship, biochemical transition state theory, and thermal physiology theory to predict the responses of extracellular enzymeVmaxandKmto temperature. Based on these concepts, we hypothesized thatVmaxandKmwould correlate positively with each other and show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lowerVmax,Km, andKmtemperature sensitivity but higherVmaxtemperature sensitivity. We tested these hypotheses with isolates of the filamentous fungusNeurospora discretacollected from around the globe and with decomposing leaf litter from a warming experiment in Alaskan boreal forest. ForNeurosporaextracellular enzymes,VmaxQ10ranged from 1.48 to 2.25, andKmQ10ranged from 0.71 to 2.80. In agreement with theory,VmaxandKmwere positively correlated for some enzymes, andVmaxdeclined under experimental warming in Alaskan litter. However, the temperature sensitivities ofVmaxandKmdid not vary as expected with warming. We also found no relationship between temperature sensitivity ofVmaxorKmand mean annual temperature of the isolation site forNeurosporastrains. DecliningVmaxin the Alaskan warming treatment implies a short‐term negative feedback to climate change, but theNeurosporaresults suggest that climate‐driven changes in plant inputs and soil properties are important controls on enzyme kinetics in the long term. Our empirical data on enzymeVmax,Km, and temperature sensitivities should be useful for parameterizing existing biogeochemical models, but they reveal a need to develop new theory on thermal adaptation mechanisms.

     
    more » « less
  3. Precipitation changes altered soil heterotrophic respiration, but the underlying microbial mechanisms remain rarely studied. This study conducted three-year switchgrass (Panicum virgatum L.) mesocosm experiment to investigate soil heterotrophic respiratory responses to altered precipitation. Five treatments were considered, including ambient precipitation (P0), two wet treatments (P+33 and P+50: 33% and 50% enhancement relative to P0), and two drought treatments (P-33 and P-50: 33% and 50% reduction relative to P0). The plant’s aboveground biomass (AGB), soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), heterotrophic respiration (Rs), biomass-specific respiration (Rss: respiration per unit of microbial biomass as a reciprocal index of microbial growth efficiency), and extracellular enzymes activities (EEAs) were quantified in soil samples (0–15 cm). Despite significantly different soil moisture contents among treatments, results showed no impact of precipitation treatments on SOC and TN. Increasing precipitation had no effect, but decreasing precipitation significantly reduced plant AGB. Relative to P0, P+33 significantly increased Rs by more than 3-fold and caused no changes in MBC, leading to significantly higher Rss (P < 0.05). P+33 also significantly increased hydrolytic enzyme activities associated with labile carbon acquisition (Cacq) by 115%. The only significant effect of drought treatments was the decreased β-D-cellobiosidase (CBH) and peroxidase (PEO) under P-33. Nonparametric analyses corroborated the strong influences of moisture and CBH on the enhanced precipitation, which stimulated soil respiratory carbon loss, likely driven by both elevated hydrolase activities and reduced microbial growth efficiency. However, the less sensitive drought effects suggested potential microbial tolerance to water deficiency despite depressed plant growth. This study informs the likely decoupled impacts of microbes and plants on soil heterotrophic respiration under changing precipitation in the switchgrass mesocosm experiment. 
    more » « less
  4. Abstract

    Soil organic nitrogen (N) is a critical resource for plants and microbes, but the processes that govern its cycle are not well-described. To promote a holistic understanding of soil N dynamics, we need an integrated model that links soil organic matter (SOM) cycling to bioavailable N in both unmanaged and managed landscapes, including agroecosystems. We present a framework that unifies recent conceptual advances in our understanding of three critical steps in bioavailable N cycling: organic N (ON) depolymerization and solubilization; bioavailable N sorption and desorption on mineral surfaces; and microbial ON turnover including assimilation, mineralization, and the recycling of microbial products. Consideration of the balance between these processes provides insight into the sources, sinks, and flux rates of bioavailable N. By accounting for interactions among the biological, physical, and chemical controls over ON and its availability to plants and microbes, our conceptual model unifies complex mechanisms of ON transformation in a concrete conceptual framework that is amenable to experimental testing and translates into ideas for new management practices. This framework will allow researchers and practitioners to use common measurements of particulate organic matter (POM) and mineral-associated organic matter (MAOM) to design strategic organic N-cycle interventions that optimize ecosystem productivity and minimize environmental N loss.

     
    more » « less
  5. Blagodatksaya, Evgenia (Ed.)
    Roots of salt marsh grasses contribute to soil building but also affect decomposition by releasing bioavailable carbon exudates and oxygen. Disentangling exudate and oxygen effects on decomposition is difficult in the field but essential for marsh carbon models and predicting the impacts of global change disturbances. We tested how pulsed, simulated exudates affect soil metabolism under oxic and anoxic conditions, and whether carbon and oxygen availability facilitate mineralization of existing organic matter (i.e., priming). We conducted a laboratory experiment in flow-through reactors, adding carbon pulses weekly for 84 days and then following starvation under low carbon conditions. Oxygen consumption and sulfide production were inhibited under anoxic and oxic conditions and slowed by 21±10% and 55±8%, respectively, between 1- and 5- days following exudate pulses. Respiration rates immediately following and between pulses increased over time, suggesting that microbes capitalize on and may acclimate to patchy resources. Starvation caused oxygen consumption and sulfide production to fall 28% and 78% in oxic and anoxic treatments. Smaller decreases in oxygen consumption following pulses could suggest greater access to secondary carbon sources and that sulfate reducers were more reliant on exudates. Soil organic carbon was not the likely secondary source because porewater dissolved inorganic carbon 13C values did not change during transit through the reactors, despite a ~26‰ difference between the supplied seawater and marsh soil. Interpretation of oxygen consumption rates is complicated by non-respiratory oxidation of reduced inorganic compounds and possibly significant lithoautotrophy. Exudate pulses elicited rapid and ephemeral respiratory responses, particularly under anoxia, but non-respiratory oxidation of reduced compounds obscured the impact of oxygen availability in our experimental system. Despite this, greater aerobic respiration rates suggest that oxygen availability has more potential to regulate carbon mineralization in coastal wetlands than root exudates. 
    more » « less