Soil microbes ultimately drive the mineralization of soil organic carbon and thus ecosystem functions. We compiled a dataset of the seasonality of microbial biomass carbon (MBC) and developed a semi-mechanistic model to map monthly MBC across the globe. MBC exhibits an equatorially symmetric seasonality between the Northern and Southern Hemispheres. In the Northern Hemisphere, MBC peaks in autumn and is minimal in spring at low latitudes (<25°N), peaks in the spring and is minimal in autumn at mid-latitudes (25°N to 50°N), while peaks in autumn and is minimal in spring at high latitudes (>50°N). This latitudinal shift of MBC seasonality is attributed to an interaction of soil temperature, soil moisture, and substrate availability. The MBC seasonality is inconsistent with patterns of heterotrophic respiration, indicating that MBC as a proxy for microbial activity is inappropriate at this resolution. This study highlights the need to explicitly represent microbial physiology in microbial models. The interactive controls of environments and substrate on microbial seasonality provide insights for better representing microbial mechanisms in simulating ecosystem functions at the seasonal scale.
This content will become publicly available on March 1, 2025
- PAR ID:
- 10502804
- Publisher / Repository:
- ScienceDirect
- Date Published:
- Journal Name:
- European Journal of Soil Biology
- Volume:
- 120
- Issue:
- C
- ISSN:
- 1164-5563
- Page Range / eLocation ID:
- 103602
- Subject(s) / Keyword(s):
- Precipitation change Heterotrophic respiration Microbial growth efficiency Extracellular enzyme activity Switchgrass Mesocosm experiment
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Nitrogen (N) fertilization significantly affects soil extracellular oxidases, agents responsible for decomposition of slow turnover and recalcitrant soil organic carbon (SOC; e.g., lignin), and consequently influences soil carbon sequestration capacity. However, it remains unclear how soil oxidases mediate SOC sequestration under N fertilization, and whether these effects co‐vary with plant type (e.g., bioenergy crop species). Using a spatially explicit design and intensive soil sampling strategy under three fertilization treatments in switchgrass (SG:
Panicum virgatum L.) and gamagrass (GG:Tripsacum dactyloides L.) croplands, we quantified the activities of polyphenolic oxidase (PHO ), peroxidase (PER ), and their sum associated with recalcitrant C acquisition (OX ). The fertilization treatments included no N fertilizer input (NN), low N input (LN: 84 kg N ha−1 year−1in urea), and high N input (HN: 168 kg N ha−1 year−1in urea). Besides correlations between soil oxidases and SOC (formerly published), both descriptive and geostatistical approaches were applied to evaluate the effects of N fertilization and crop type on soil oxidases activities and their spatial distributions. Results showed significantly negative correlations between soil oxidase activities and SOC across all treatments. The negative relationship of soil oxidases and SOC was also evident under N fertilization. First, LN significantly depressed oxidases in both mean activities and spatial heterogeneity, which corresponded to increased SOC in SG (though by 5.4%). LN slightly influenced oxidases activities and their spatial heterogeneity, consistent with insignificant changes of SOC in GG. Second, HN showed trends of decrease in soil oxidase activities, which aligned with the significantly enhanced SOC in both croplands. Overall, this study demonstrated that soil oxidase activities acted as sensitive and negative mediators of SOC sequestration in bioenergy croplands and optimizing fertilizer use particularly in switchgrass cropland can improve for both carbon sequestration and environmental benefit. -
Soil moisture reductions during drought often inhibit soil microbial activity and inhibit decomposition rates by reducing microbial biomass or by altering microbial communities. Evidence suggests that soil water must drop below a critical threshold to inhibit microbial activity. Thus, it is likely that the seasonal timing of drought will determine the extent to which belowground processes are adversely impacted by drought. Specifically, the effects of drought might be minimal during cool, wet periods typical of late spring but dramatic during hot summer months with high evapotranspiration rates that lower soil moisture levels below the critical threshold. Here, we present results from a study designed to quantify the effect of drought on soil microbial abundance, community composition, and soil water diffusion across four months, and to then assess how drought impacts the microbial decomposition of leaf matter. We imposed a season‐long drought in a Wisconsin tallgrass prairie and measured soil moisture, bacterial composition and abundance, microbial respiration, and decomposition rates throughout the growing season. Bacterial communities varied considerably among dates, but drought did not affect either bacterial abundance or community composition. Microbial respiration declined significantly during periods of drought when soil pores likely became hydrologically isolated, ultimately reducing cumulative microbial respiration by 10%. The reduction in microbial activity in drought treatments caused a 50% decline in the decomposition of refractory material. Our study highlights that sublethal effects of drought on microbial communities, occurring only when soil moisture declined below a tolerance threshold, can have large impacts on microbial carbon release or decomposition, highlighting the need to incorporate such measures into future studies.
-
Abstract Climate variability and periodic droughts have complex effects on carbon (C) fluxes, with uncertain implications for ecosystem C balance under a changing climate. Responses to climate change can be modulated by persistent effects of climate history on plant communities, soil microbial activity, and nutrient cycling (i.e., legacies). To assess how legacies of past precipitation regimes influence tallgrass prairie C cycling under new precipitation regimes, we modified a long‐term irrigation experiment that simulated a wetter climate for >25 years. We reversed irrigated and control (ambient precipitation) treatments in some plots and imposed an experimental drought in plots with a history of irrigation or ambient precipitation to assess how climate legacies affect aboveground net primary productivity (ANPP), soil respiration, and selected soil C pools. Legacy effects of elevated precipitation (irrigation) included higher C fluxes and altered labile soil C pools, and in some cases altered sensitivity to new climate treatments. Indeed, decades of irrigation reduced the sensitivity of both ANPP and soil respiration to drought compared with controls. Positive legacy effects of irrigation on ANPP persisted for at least 3 years following treatment reversal, were apparent in both wet and dry years, and were associated with altered plant functional composition. In contrast, legacy effects on soil respiration were comparatively short‐lived and did not manifest under natural or experimentally‐imposed “wet years,” suggesting that legacy effects on CO2efflux are contingent on current conditions. Although total soil C remained similar across treatments, long‐term irrigation increased labile soil C and the sensitivity of microbial biomass C to drought. Importantly, the magnitude of legacy effects for all response variables varied with topography, suggesting that landscape can modulate the strength and direction of climate legacies. Our results demonstrate the role of climate history as an important determinant of terrestrial C cycling responses to future climate changes.
-
Microbial biomass is known to decrease with soil drying and to increase after rewetting due to physiological assimilation and substrate limitation under fluctuating moisture conditions, but how the effects of moisture changes vary between dry and wet environments is unclear. Here, we conducted a meta‐analysis to assess the effects of elevated and reduced soil moisture on microbial biomass carbon (MBC) and nitrogen (MBN) across a broad range of forest sites between dry and wet regions. We found that the influence of both elevated and reduced soil moisture on MBC and MBN concentrations in forest soils was greater in dry than in wet regions. The influence of altered soil moisture on MBC and MBN concentrations increased significantly with the manipulation intensity but decreased with the length of experimental period, with a dramatic increase observed under a very short‐term precipitation pulse. Moisture effect did not differ between coarse‐ and fine‐textured soils. Precipitation intensity, experimental duration, and site standardized precipitation index (dry or wet climate) were more important than edaphic factors (i.e., initial water content, bulk density, clay content) in determining microbial biomass in response to altered moisture in forest soils. Different responses of microbial biomass in forest soils between dry and wet regions should be incorporated into models to evaluate how changes in the amount, timing and intensity of precipitation affect soil biogeochemical processes.more » « less