Abstract A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]‐cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated.
more »
« less
Enantioselective Synthesis of (−)‐10‐Hydroxyacutuminine
Abstract An enantioselective synthesis of (−)‐10‐hydroxyacutuminine is reported. Central to our strategy is a photochemical [2+2] cycloaddition that forges two of the quaternary stereocenters present in the acutumine alkaloids. A subsequent retro‐aldol/Dieckmann sequence furnishes the spirocyclic cyclopentenone. Efforts to chlorinate the acutumine scaffold at C10 under heterolytic or radical deoxychlorination conditions led to the synthesis of an unexpected cyclopropane‐containing pentacycle.
more »
« less
- Award ID(s):
- 1800536
- PAR ID:
- 10372368
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 16
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]‐cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated.more » « less
-
Abstract We describe effective development of the highly diastereoselective synthesis of double helical tetraamine 2-H2-C2 and propose a mechanism for its formation. The resolution of 2-H2-C2 is facilitated by a high racemization barrier of 43 kcal mol–1 and it is implemented via either a chiral auxiliary or preparative supercritical fluid chromatography. This enables preparation of the first high-spin neutral diradical, with spin density delocalized within an enantiomeric double helical π-system. The presence of two effective 3-electron C–N bonds in the diradical leads to: (1) the triplet (S = 1) high-spin ground state with a singlet-triplet energy gap of 0.4 kcal mol–1 and (2) the long half-life of up to 6 days in 2-MeTHF at room temperature. The diradical possesses a racemization barrier of at least 26 kcal mol–1 in 2-MeTHF at 293 K and chiroptical properties, with an absorption anisotropy factor |g| ≈ 0.005 at 548 nm. These unique magnetic and optical properties of our diradical form the basis for the development of next-generation spintronic devices. 1 Introduction 2 Synthesis and Resolution of the C 2-Symmetric Double Helical Tetraamine 2-H2-C 2 3 Synthesis and Characterization of Neutral High-Spin Aminyl Diradical 22• -C 2 4 Conclusionmore » « less
-
Abstract To advance the MXene field, it is crucial to optimize each step of the synthesis process and create a detailed, systematic guide for synthesizing high‐quality MXene that can be consistently reproduced. In this study, a detailed guide is provided for an optimized synthesis of titanium carbide (Ti3C2Tx) MXene using a mixture of hydrofluoric and hydrochloric acids for the selective etching of the stoichimetric‐Ti3AlC2MAX phase and delamination of the etched multilayered Ti3C2TxMXene using lithium chloride at 65 °C for 1 h with argon bubbling. The effect of different synthesis variables is investigated, including the stoichiometry of the mixed powders to synthesize Ti3AlC2, pre‐etch impurity removal conditions, selective etching, storage, and drying of MXene multilayer powder, and the subsequent delamination conditions. The synthesis yield and the MXene film electrical conductivity are used as the two parameters to evaluate the MXene quality. Also the MXenes are characterized with scanning electron microscopy, x‐ray diffraction, atomic force microscopy, and ellipsometry. The Ti3C2Txfilm made via the optimized method shows electrical conductivity as high as ≈21,000 S/cm with a synthesis yield of up to 38 %. A detailed protocol is also provided for the Ti3C2TxMXene synthesis as the supporting information for this study.more » « less
-
Abstract In this work, we demonstrate plasma‐catalytic synthesis of hydrogen and acrylonitrile (AN) from CH4and N2. The process involves two steps: (1) plasma synthesis of C2H2and HCN in a nominally 1:1 stoichiometric ratio with high yield up to 90% and (2) downstream thermocatalytic reaction of these intermediates to make AN. The effect of process parameters on product distributions and specific energy requirements are reported. If the catalytic conversion of C2H2and HCN in the downstream thermocatalytic step to AN were perfect, which will require further improvements in the thermocatalytic reactor, then at the maximum output of our 1 kW radiofrequency 13.56 MHz transformer, a specific energy requirement of 73 kWh kgAN−1was determined. The expectation is that scaling up the process to higher throughputs would result in decreases in specific energy requirement into the predicted economically viable range less than 10 kWh kgAN−1.more » « less
An official website of the United States government
