skip to main content


Title: Scientific Merits and Analytical Challenges of Tree‐Ring Densitometry
Abstract

X‐ray microdensitometry on annually resolved tree‐ring samples has gained an exceptional position in last‐millennium paleoclimatology through the maximum latewood density (MXD) parameter, but also increasingly through other density parameters. For 50 years, X‐ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light‐based techniques are becoming increasingly popular, and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resolution. Here we review the current understanding and merits of wood density for tree‐ring research, associated microdensitometric techniques, and analytical measurement challenges. The review is further complemented with a careful comparison of new measurements derived at 17 laboratories, using several different techniques. The new experiment allowed us to corroborate and refresh “long‐standing wisdom” but also provide new insights. Key outcomes include (i) a demonstration of the need for mass/volume‐based recalibration to accurately estimate average ring density; (ii) a substantiation of systematic differences in MXD measurements that cautions for great care when combining density data sets for climate reconstructions; and (iii) insights into the relevance of analytical measurement resolution in signals derived from tree‐ring density data. Finally, we provide recommendations expected to facilitate futureinter‐comparability and interpretations for global change research.

 
more » « less
NSF-PAR ID:
10372417
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Reviews of Geophysics
Volume:
57
Issue:
4
ISSN:
8755-1209
Page Range / eLocation ID:
p. 1224-1264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wood stiffness (modulus of elasticity, MOE) is an important property for conifer wood, with the variability in MOE largely being a function of both the specific gravity (SG) (wood density) and the angle of the microfibrils within the S2 layer of longitudinal tracheids. Rapid analysis techniques can be used together to quantify MOE; while SG can be determined with relative ease, this is not the case for microfibril angle, requiring expensive X-ray diffraction equipment. An alternative to microfibril angle is to measure longitudinal acoustic velocity. The objective of this study was to measure and then model the within tree variation in dynamic MOE (MOEdyn) by developing the methodology to measure ultrasonic velocity (USV) in radial samples from pith to bark using ultrasonic frequencies (>20 kHz). A total of 419 pith-to-bark radial strips, collected from multiple height levels in 92 loblolly pine (Pinus taeda) trees, were processed to obtain matching SG (2mm longitudinal) and USV (8.2-mm longitudinal) samples. Ring-by-ring SG was measured using X-ray densitometry and time-of-flight USV was measured at a 10-mm radial resolution from pith to bark. A subset of samples was sent to SilviScan to determine microfibril angle using X-ray diffraction. The relationship between microfibril angle and USV was strong (R2 = 0.91, RMSE = 2.6°). Nonlinear mixed-effects models were then developed to predict radial variation in SG, USV and MOEdyn. Fixed effects for the models, which included cambial age and height of disk within tree, had pseudo R2 values of 0.67 for SG (RMSE = 0.051), 0.71 for USV (RMSE = 316 m/s) and 0.69 for MOEdyn (RMSE = 1.9 GPa). When combined with SG measurements from X-ray densitometry, USV measurements from pith to bark are a powerful tool for assessing variability in wood stiffness.

     
    more » « less
  2. Abstract

    The 1783–1784 CE Laki eruption in Iceland was one of the largest, in terms of the mass of SO2emitted, high‐latitude eruptions in the last millennium, but the seasonal and regional climate response was heterogeneous in space and time. Although the eruption did not begin until early June, tree‐ring maximum latewood density (MXD) reconstructions from Alaska suggest that the entire 1783 summer was extraordinarily cold. We use high‐resolution quantitative wood anatomy, climate model simulations, and proxy systems modeling to resolve the intra‐annual climate effects of the Laki eruption on temperatures over northwestern North America. We measured wood anatomical characteristics of white spruce (Picea glauca) trees from two northern Alaska sites. Earlywood cell characteristics of the 1783 ring are normal, while latewood cell wall thickness is significantly and anomalously reduced compared to non‐eruption years. Combined with complementary evidence from climate model experiments and proxy systems modeling, these features indicate an abrupt and premature cessation of cell wall thickening due to a rapid temperature decrease toward the end of the growing season. Reconstructions using conventional annual resolution MXD likely over‐estimate total growing season cooling in this year, while ring width fails to capture this abrupt late‐summer volcanic signal. Our study has implications not only for the interpretation of the climatic impacts of the Laki eruption in North America, but more broadly demonstrates the importance of timing and internal variability when comparing proxy temperature reconstructions and climate model simulations. It further demonstrates the value of developing cellular‐scale tree‐ring proxy measurements for paleoclimatology.

     
    more » « less
  3. Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nano-fabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nm-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously: Namely, interfacial chemical reactions are frequently driven by “anomalies” or “non-idealities”, such as defects, nanoconfinement, and other non-typical chemical structures. Third, progress in computational chemistry have yielded new insights that allow a move beyond simple schematics leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges, as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration. 
    more » « less
  4. In north-western North America, the so-called divergence problem (DP) is expressed in tree ring width (RW) as an unstable temperature signal in recent decades. Maximum latewood density (MXD), from the same region, shows minimal evidence of DP. While MXD is a superior proxy for summer temperatures, there are very few long MXD records from North America. Latewood blue intensity (LWB) measures similar wood properties as MXD, expresses a similar climate response, is much cheaper to generate and thereby could provide the means to profoundly expand the extant network of temperature sensitive tree-ring (TR) chronologies in North America. In this study, LWB is measured from 17 white spruce sites ( Picea glauca) in south-western Yukon to test whether LWB is immune to the temporal calibration instabilities observed in RW. A number of detrending methodologies are examined. The strongest calibration results for both RW and LWB are consistently returned using age-dependent spline (ADS) detrending within the signal-free (SF) framework. RW data calibrate best with June–July maximum temperatures (Tmax), explaining up to 28% variance, but all models fail validation and residual analysis. In comparison, LWB calibrates strongly (explaining 43–51% of May–August Tmax) and validates well. The reconstruction extends to 1337 CE, but uncertainties increase substantially before the early 17th century because of low replication. RW-, MXD- and LWB-based summer temperature reconstructions from the Gulf of Alaska, the Wrangell Mountains and Northern Alaska display good agreement at multi-decadal and higher frequencies, but the Yukon LWB reconstruction appears potentially limited in its expression of centennial-scale variation. While LWB improves dendroclimatic calibration, future work must focus on suitably preserved sub-fossil material to increase replication prior to 1650 CE. 
    more » « less
  5. Deep learning approaches have been adopted in Forestry research including tree classification and inventory prediction. In this study, we proposed an application of a deep learning approach, Temporal Convolution Network, on sequences of radial resistograph profiles to identify non-thrive trees and to predict wood density. Non-destructive resistance drilling measurements on South and West orientations of 274 trees in a 41-year-old Douglas-fir stand in Marion County, Oregon, USA were used as input series. Non-thrive trees were defined based on their changes in social status since establishment. Wood density was derived by X-ray densitometry from cores obtained by increment borers. Data was split for cross validation. Optimal models were fine-tuned with training and validation datasets, then run with test datasets for model evaluation metrics. Results confirmed that the application of the Temporal Convolution Network on resistograph profiles enables non-thrive tree identification with the probability, represented by the area under the Receiver Operator Characteristic curve, equal to 0.823. Temporal Convolution Network for wood density prediction showed a slight improvement in accuracy (RMSE = 18.22) compared to the traditional linear (RMSE = 20.15) and non-linear (RMSE = 20.33) regression methods. We suggest that the use of machine learning algorithms can be a promising methodology for the analysis of sequential data from non-destructive devices. 
    more » « less