We present a compact heterodyne laser interferometer developed for high-sensitivity displacement sensing applications. This interferometer consists of customized prisms and wave plates assembled as a quasi-monolithic unit to realize a miniaturized system. The interferometer design adopts a common-mode rejection scheme to provide a high rejection ratio to common environmental noise. Experimental tests in vacuum show a displacement sensitivity level of
We present a performance analysis of compact monolithic optomechanical inertial sensors that describes their key fundamental limits and overall acceleration noise floor. Performance simulations for low-frequency gravity-sensitive inertial sensors show attainable acceleration noise floors on the order of
- Publication Date:
- NSF-PAR ID:
- 10165375
- Journal Name:
- Applied Optics
- Volume:
- 59
- Issue:
- 22
- Page Range or eLocation-ID:
- Article No. G167
- ISSN:
- 1559-128X; APOPAI
- Publisher:
- Optical Society of America
- Sponsoring Org:
- National Science Foundation
More Like this
-
at and as low as above . The prototype unit is in size and weighs , allowing subsequent integration in compact systems. -
Traveling-wave optomechanical interactions, known as Brillouin interactions, have now been established as a powerful and versatile resource for photonic sources, sensors, and radio-frequency processors. However, established Brillouin-based interactions with sufficient interaction strengths involve short phonon lifetimes, which critically limit their performance for applications, including radio-frequency filtering and optomechanical storage devices. Here, we investigate a new paradigm of optomechanical interactions with tightly confined fundamental acoustic modes, which enables the unique and desirable combination of high optomechanical coupling, long phonon lifetimes, tunable phonon frequencies, and single-sideband amplification. Using sensitive four-wave mixing spectroscopy controlling for noise and spatial mode coupling, optomechanical interactions with long
phonon lifetimes and strong coupling are observed in a tapered fiber. In addition, we demonstrate novel phonon self-interference effects resulting from the unique combination of an axially varying device geometry with long phonon lifetimes. A generalized theoretical model, in excellent agreement with experiments, is developed with broad applicability to inhomogeneous optomechanical systems. -
The design, fabrication, and characterization of low-loss ultra-compact bends in high-index (
at ) plasma-enhanced chemical vapor deposition silicon-rich silicon nitride (SRN) were demonstrated and utilized to realize efficient, small footprint thermo-optic phase shifter. Compact bends were structured into a folded waveguide geometry to form a rectangular spiral within an area of , having a total active waveguide length of 1.2 mm. The device featured a phase-shifting efficiency of and a 3 dB switching bandwidth of 15 KHz. We propose SRN as a promising thermo-optic platform that combines the properties of silicon and stoichiometric silicon nitride. -
The mid-IR spectroscopic properties of
doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulatedmore » -
We experimentally demonstrate a camera whose primary optic is a cannula/needle (
and ) that acts as a light pipe transporting light intensity from an object plane (35 cm away) to its opposite end. Deep neural networks (DNNs) are used to reconstruct color and grayscale images with a field of view of 18° and angular resolution of . We showed a large effective demagnification of . Most interestingly, we showed that such a camera could achieve close to diffraction-limited performance with an effective numerical aperture of 0.045, depth of focus , and resolution close to the sensor pixel size (3.2 µm). When trained on images with depth information, the DNN can create depth maps. Finally, we show DNN-based classification of the EMNIST dataset before and after image reconstructions. The former could be useful for imaging with enhanced privacy.