skip to main content


Title: In Situ Studies of the Formation of Tungsten and Niobium Oxide Nanoparticles: Towards Automated Analysis of Reaction Pathways from PDF Analysis using the Pearson Correlation Coefficient
Abstract

Using Pair Distribution Function (PDF) analysis of in situ total scattering data, we investigate the formation of tungsten and niobium oxides in a simple solvothermal synthesis. We use Pearson Correlation Coefficient (PCC) analysis of the time resolved PDFs to both map the structural changes taking place throughout the synthesis and identify structural models for precursor and product through PCC‐based structure mining. Our analysis first shows that ultra‐small tungsten and niobium oxide nanoparticles form instantaneously upon heating, with sizes between 1.5 and 2 nm. We show that the main structural motifs in the nanoparticles can be described with structures containing pentagonal columns, which is characteristic for many bulk tungsten and niobium oxides. We furthermore elucidate the structure of the precursor complex as clusters of octahedra with O‐ and Cl‐ligands. The PCC based methodology automates the structure characterization and proves useful for analysis of large datasets of for example, time resolved X‐ray scattering studies. The PCC is implemented in ‘PDF in the cloud’, a web platform for PDF analysis.

 
more » « less
Award ID(s):
1922234
NSF-PAR ID:
10443944
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry–Methods
Volume:
2
Issue:
9
ISSN:
2628-9725
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium-ion batteries (LIBs) are ubiquitous in everyday applications. However, Lithium (Li) is a limited resource on the planet and, therefore, not sustainable. As an alternative to lithium, earth-abundant and cheaper multivalent metals such as aluminum (Al) and calcium (Ca) have been actively researched in battery systems. However, finding suitable intercalation hosts for multivalent-ion batteries is urgently needed. Open-tunneled oxides represent a specific category of microparticles distinguished by the presence of integrated one-dimensional channels or nanopores. This work focuses on two promising open-tunnel oxides: Niobium Tungsten Oxide (NTO) and Molybdenum Vanadium Oxide (MoVO). The MoVO structure can accommodate a larger number of multivalent ions than NTO due to its larger surface area and different shapes. Specifically, the MoVO structure can adsorb Ca, Li, and Al ions with adsorption potentials ranging from around 4 to 5 eV. However, the adsorption potential for hexagonal channels of Al ion drops to 1.73 eV due to the limited channel area. The NTO structure exhibits an insertion/adsorption potential of 4.4 eV, 3.4 eV, and 0.9 eV for one Li, Ca, and Al, respectively. Generally, Ca ions are more readily adsorbed than Al ions in both MoVO and NTO structures. Bader charge analysis and charge density plots reveal the role of charge transfer and ion size in the insertion of multivalent ions such as Ca and Al into MoVO and NTO systems. Exploring open-tunnel oxide materials for battery applications is hindered by vast compositional possibilities. The execution of experimental trials and quantum-based simulations is not viable for addressing the challenge of locating a specific item within a large and complex set of possibilities. Therefore, it is imperative to conduct structural stability testing to identify viable combinations with sufficient pore topologies. Data mining and machine learning techniques are employed to discover innovative transitional metal oxide materials. This study compares two machine learning algorithms, one utilizing descriptors and the other employing graphs to predict the synthesizability of new materials inside a laboratory setting. The outcomes of this study offer valuable insights into the exploration of alternative naturally occurring multiscale particles. 
    more » « less
  2. null (Ed.)
    Conventional drying of colloidal materials and gels (including cement) can lead to detrimental effects due to the buildup of internal stresses as water evaporates from the nano/microscopic pores. However, for these gel materials the underlying nanoscopic alterations that are, in part, responsible for macroscopically-measured strain values (especially at low relative humidity) remain a topic of open debate in the literature. In this study, sodium-based calcium-alumino-silicate-hydrate (C-(N)-A-S-H) gel, the major binding phase of silicate-activated blast furnace slag (one type of low-CO 2 cement), is investigated from a drying perspective, since it is known to suffer extensively from drying-induced microcracking. By employing in situ synchrotron X-ray total scattering measurements and pair distribution function (PDF) analysis we show that the significant contributing factor to the strain development in this material at extremely low relative humidity (0%) is the local atomic structural rearrangement of the C-(N)-A-S-H gel, including collapse of interlayer spacing and slight disintegration of the gel. Moreover, analysis of the medium range (1.0–2.2 nm) ordering in the PDF data reveals that the PDF-derived strain values are in much closer agreement (same order of magnitude) with the macroscopically measured strain data, compared to previous results based on reciprocal space X-ray diffraction data. From a mitigation standpoint, we show that small amounts of ZrO 2 nanoparticles are able to actively reinforce the structure of silicate-activated slag during drying, preventing atomic level strains from developing. Mechanistically, these nanoparticles induce growth of a silica-rich gel during drying, which, via density functional theory calculations, we show is attributed to the high surface reactivity of tetragonal ZrO 2 . 
    more » « less
  3. The stabilization of the B-site oxidation state in ABO 3 perovskites using wet-chemical methods is a synthetic challenge, which is of fundamental and practical interest for energy storage and conversion devices. In this work, defect-controlled (Sr-deficiency and oxygen vacancies) strontium niobium( iv ) oxide (Sr 1−x NbO 3−δ , SNO) metal oxide nanoparticles (NPs) were synthesized for the first time using a low-pressure wet-chemistry synthesis. The experiments were performed under reduced oxygen partial pressure to prevent by-product formation and with varying Sr/Nb molar ratio to favor the formation of Nb 4+ pervoskites. At a critical Sr to Nb ratio (Sr/Nb = 1.3), a phase transition is observed forming an oxygen-deficient SrNbO 3 phase. Structural refinement on the resultant diffraction pattern shows that the SNO NPs consists of a near equal mixture of SrNbO 3 and Sr 0.7 NbO 3−δ crystal phases. A combination of Rietveld refinement and X-ray photoelectron spectroscopy (XPS) confirmed the stabilization of the +4 oxidation state and the formation of oxygen vacancies. The Nb local site symmetry was extracted through Raman spectroscopy and modeled using DFT. As further confirmation, the particles demonstrate the expected absorption highlighting their restored optoelectronic properties. This low-pressure wet-chemical approach for stabilizing the oxidation state of a transition metal has the potential to be extended to other oxygen sensitive, low dimensional perovskite oxides with unique properties. 
    more » « less
  4. Abstract

    Sodium ion batteries (NIBs) are an attractive alternative to lithium‐ion batteries in applications that require large‐scale energy storage due to sodium's high natural abundance and low cost. Hard carbon (HC) is the most promising anode material for NIBs; however, there is a knowledge gap in the understanding of the sodium binding mechanism that prevents a rational design of HC. This study tunes sucrose‐derived HC via synthesis temperature then evaluates the structural, physical, and electrochemical properties. Neutron total scattering is used to generate structural models by fitting pair distribution functions (PDF) with a combination of molecular dynamics and reverse Monte Carlo methods. From this model, the number and type of structural features are identified, quantified, and correlated to the galvanostatic charge/discharge. A method of PDF “fingerprinting” binding sites using Na probe atoms is developed and analyzing these PDFs reveals an atomistic view of ion binding sites responsible for “defect” storage mechanisms. Combining these techniques results in an atomic‐level study that provides a big picture of the Na‐binding mechanism in NIBs, which allows for more precise tuning of the structure–property relationships in the future. The methodologies developed will also enable new strategies for the analysis of amorphous functional materials.

     
    more » « less
  5. 4d transition metal oxides have emerged as promising materials for numerous applications including high mobility electronics. SrNbO3 is one such candidate material, serving as a good donor material in interfacial oxide systems and exhibiting high electron mobility in ultrathin films. However, its synthesis is challenging due to the metastable nature of the d1 Nb4+ cation and the limitations in the delivery of refractory Nb. To date, films have been grown primarily by pulsed laser deposition (PLD), but development of a means to grow and stabilize the material via molecular beam epitaxy (MBE) would enable studies of interfacial phenomena and multilayer structures that may be challenging by PLD. To that end, SrNbO3 thin films were grown using hybrid MBE for the first time using a tris(diethylamido)(tert-butylimido) niobium precursor for Nb and an elemental Sr source on GdScO3 substrates. Varying thicknesses of insulating SrHfO3 capping layers were deposited using a hafnium tert-butoxide precursor for Hf on top of SrNbO3 films to preserve the metastable surface. Grown films were transferred in vacuo for x-ray photoelectron spectroscopy to quantify elemental composition, density of states at the Fermi energy, and Nb oxidation state. Ex situ studies by x-ray absorption near edge spectroscopy and scanning transmission electron microscopy illustrate that the SrHfO3 capping plays an important role in preserving the crystalline quality of the material and the Nb 4d1 metastable charge state under atmospheric conditions.

     
    more » « less