skip to main content


Title: Gaze coordination with strides during walking in the cat
Key points

Vision plays a crucial role in guiding locomotion in complex environments, but the coordination between gaze and stride is not well understood.

The coordination of gaze shifts, fixations, constant gaze and slow gaze with strides in cats walking on different surfaces were examined.

It was found that gaze behaviours are coordinated with strides even when walking on a flat surface in the complete darkness, occurring in a sequential order during different phases of the stride.

During walking on complex surfaces, gaze behaviours are typically more tightly coordinated with strides, particularly at faster speeds, only slightly shifting in phase.

These findings indicate that the coordination of gaze behaviours with strides is not vision‐driven, but is a part of the whole body locomotion synergy; the visual environment and locomotor task modulate it. The results may be relevant to developing diagnostic tools and rehabilitation approaches for patients with locomotor deficits.

Abstract

Vision plays a crucial role in guiding locomotion in complex environments. However, the coordination between the gaze and stride is not well understood. We investigated this coordination in cats walking on a flat surface in darkness or light, along a horizontal ladder and on a pathway with small stones. We recorded vertical and horizontal eye movements and 3‐D head movement, and calculated where gaze intersected the walkway. The coordination of gaze shifts away from the animal, gaze shifts toward, fixations, constant gaze, and slow gaze with strides was investigated. We found that even during walking on the flat surface in the darkness, all gaze behaviours were coordinated with strides. Gaze shifts and slow gaze toward started in the beginning of each forelimb's swing and ended in its second half. Fixations peaked throughout the beginning and middle of swing. Gaze shifts away began throughout the second half of swing of each forelimb and ended when both forelimbs were in stance. Constant gaze and slow gaze away occurred in the beginning of stance. However, not every behaviour occurred during every stride. Light had a small effect. The ladder and stones typically increased the coordination and caused gaze behaviours to occur 3% earlier in the cycle. At faster speeds, the coordination was often tighter and some gaze behaviours occurred 2–16% later in the cycle. The findings indicate that the coordination of gaze with strides is not vision‐driven, but is a part of the whole body locomotion synergy; the visual environment and locomotor task modulate it.

 
more » « less
Award ID(s):
1912557
NSF-PAR ID:
10372468
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Journal of Physiology
Volume:
597
Issue:
21
ISSN:
0022-3751
Page Range / eLocation ID:
p. 5195-5229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Locomotion on complex terrains often requires vision. However, how vision serves locomotion is not well understood. Here, we asked when visual information necessary for accurate stepping is collected and how its acquisition relates to the step cycle. In cats of both sexes, we showed that a brief (200–400 ms) interruption of visual input can rapidly influence cat’s walking along a horizontal ladder. Depending on the phase within the step cycle, a 200 ms period of darkness could be tolerated fully without any changes to the strides or could lead to minor increases of stride duration. The effects of 300–400 ms of visual input denial, which typically prolonged stances and/or swings, also depended on the phase of the darkness onset. The increase of the duration of strides was always shorter than the duration of darkness. We conclude that visual information for planning a swing is collected starting from the middle of the preceding stance until the beginning of the current swing. For a stance (and/or a swing of the other paw), visual information is collected starting from the end of the previous stance and until the middle of the current stance. Acquisition of visual information during these windows is not uniform but depends on the phase of the step cycle. Notably, both the extension of these windows and their non-homogeneity are closely related to the pattern of gaze behaviour in cats, described previously. This new knowledge will help to guide research and understanding of neuronal mechanisms of visuomotor integration and modulation of visual function by strides during locomotion. 
    more » « less
  2. Abstract Area 5 of the parietal cortex is part of the “dorsal stream” cortical pathway which processes visual information for action. The signals that area 5 ultimately conveys to motor cortex, the main area providing output to the spinal cord, are unknown. We analyzed area 5 neuronal activity during vision-independent locomotion on a flat surface and vision-dependent locomotion on a horizontal ladder in cats focusing on corticocortical neurons (CCs) projecting to motor cortex from the upper and deeper cortical layers and compared it to that of neighboring unidentified neurons (noIDs). We found that upon transition from vision-independent to vision-dependent locomotion, the low discharge of CCs in layer V doubled and the proportion of cells with 2 bursts per stride tended to increase. In layer V, the group of 2-bursters developed 2 activity peaks that coincided with peaks of gaze shifts along the surface away from the animal, described previously. One-bursters and either subpopulation in supragranular layers did not transmit any clear unified stride-related signal to the motor cortex. Most CC group activities did not mirror those of their noID counterparts. CCs with receptive fields on the shoulder, elbow, or wrist/paw discharged in opposite phases with the respective groups of pyramidal tract neurons of motor cortex, the cortico-spinal cells. 
    more » « less
  3. The activity of motor cortex is necessary for accurate stepping on a complex terrain. How this activity is generated remains unclear. The goal of this study was to clarify the contribution of signals from the ventrolateral thalamus (VL) to formation of locomotion-related activity of motor cortex during vision-independent and vision-dependent locomotion. In two cats, we recorded the activity of neurons in layer V of motor cortex as cats walked on a flat surface and a horizontal ladder. We reversibly inactivated ~10% of the VL unilaterally with the glutamatergic transmission antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and analyzed how this affected the activity of motor cortex neurons. We examined neuronal subpopulations with somatosensory receptive fields on different segments of the forelimb and pyramidal tract projecting neurons (PTNs). We found that the VL contribution to the locomotion-related activity of motor cortex is very powerful and has both excitatory and inhibitory components. The magnitudes of both the excitatory and inhibitory contributions fluctuate over the step cycle and depend on locomotion task. On a flat surface, the VL contributes more excitation to the shoulder- and elbow-related neurons than the wrist/paw-related cells. The VL excites the shoulder-related group the most during the transition from stance to swing phase, while most intensively exciting the elbow-related group during the transition from swing to stance. The VL contributes more excitation for the fast- than slow-conducting PTNs. Upon transition to vision-dependent locomotion on the ladder, the VL contribution increases more for the wrist/paw-related neurons and slow-conducting PTNs. NEW & NOTEWORTHY How the activity of motor cortex is generated and the roles that different inputs to motor cortex play in formation of response properties of motor cortex neurons during movements remain unclear. This is the first study to characterize the contribution of the input from the ventrolateral thalamus (VL), the main subcortical input to motor cortex, to the activity of motor cortex neurons during vision-independent and vision-dependent locomotion. 
    more » « less
  4. Objective

    This study examined the interaction of gait-synchronized vibrotactile cues with an active ankle exoskeleton that provides plantarflexion assistance.

    Background

    An exoskeleton that augments gait may support collaboration through feedback to the user about the state of the exoskeleton or characteristics of the task.

    Methods

    Participants ( N = 16) were provided combinations of torque assistance and vibrotactile cues at pre-specified time points in late swing and early stance while walking on a self-paced treadmill. Participants were either given explicit instructions ( N = 8) or were allowed to freely interpret (N=8) how to coordinate with cues.

    Results

    For the free interpretation group, the data support an 8% increase in stride length and 14% increase in speed with exoskeleton torque across cue timing, as well as a 5% increase in stride length and 7% increase in speed with only vibrotactile cues. When given explicit instructions, participants modulated speed according to cue timing—increasing speed by 17% at cues in late swing and decreasing speed 11% at cues in early stance compared to no cue when exoskeleton torque was off. When torque was on, participants with explicit instructions had reduced changes in speed.

    Conclusion

    These findings support that the presence of torque mitigates how cues were used and highlights the importance of explicit instructions for haptic cuing. Interpreting cues while walking with an exoskeleton may increase cognitive load, influencing overall human-exoskeleton performance for novice users.

    Application

    Interactions between haptic feedback and exoskeleton use during gait can inform future feedback designs to support coordination between users and exoskeletons.

     
    more » « less
  5. Key points

    The neuromotor system generates flexible motor patterns that can adapt to changes in our bodies or environment and also take advantage of assistance provided by the environment.

    We ask how energy minimization influences adaptive learning during human locomotion to improve economy when walking on a split‐belt treadmill. We use a model‐based approach to predict how people should adjust their walking pattern to take advantage of the assistance provided by the treadmill, and we validate these predictions empirically.

    We show that adaptation to a split‐belt treadmill can be explained as a process by which people reduce step length asymmetry to take advantage of the work performed by the treadmill to reduce metabolic cost.

    Our results also have implications for the evaluation of devices designed to reduce effort during walking, as locomotor adaptation may serve as a model approach to understand how people learn to take advantage of external assistance.

    Abstract

    In everyday tasks such as walking and running, we often exploit the work performed by external sources to reduce effort. Recent research has focused on designing assistive devices capable of performing mechanical work to reduce the work performed by muscles and improve walking function. The success of these devices relies on the user learning to take advantage of this external assistance. Although adaptation is central to this process, the study of adaptation is often done using approaches that seem to have little in common with the use of external assistance. We show in 16 young, healthy participants that a common approach for studying adaptation, split‐belt treadmill walking, can be understood from a perspective in which people learn to take advantage of mechanical work performed by the treadmill. Initially, during split‐belt walking, people step further forward on the slow belt than the fast belt which we measure as a negative step length asymmetry, but this asymmetry is reduced with practice. We demonstrate that reductions in asymmetry allow people to extract positive work from the treadmill, reduce the positive work performed by the legs, and reduce metabolic cost. We also show that walking with positive step length asymmetries, defined by longer steps on the fast belt, minimizes metabolic cost, and people choose this pattern after guided experience of a wide range of asymmetries. Our results suggest that split‐belt adaptation can be interpreted as a process by which people learn to take advantage of mechanical work performed by an external device to improve economy.

     
    more » « less