Abstract Evidence that the hippocampus is critical for spatial memory in nonnavigational tests is mixed. A recent study reported that temporary hippocampal inactivation impaired spatial memory in the nonnavigational Hamilton Search Task in monkeys. However, several studies have documented no impairment on other nonnavigational spatial memory tests following permanent hippocampal lesions. It was hypothesized that transient, but not permanent, hippocampal disruption produces deficits because monkeys undergoing transient inactivation continue to try to use a hippocampal‐dependent strategy, whereas monkeys with permanent lesions use a nonhippocampal‐dependent strategy. We evaluated this hypothesis by testing five rhesus monkeys with hippocampal lesions and five controls on a computerized analogue of the Hamilton Search Task. On each trial, monkeys saw an array of squares on a touchscreen, each of which “hid” one reward. Retrieving a reward depleted that location and monkeys continued selecting squares until they found all rewards. The optimal strategy is to remember chosen locations and choose each square once. Unlike the inactivation study, monkeys with hippocampal damage were as accurate as controls regardless of retention interval. Critically, we found no evidence that the groups used different strategies, as measured by learning rates, spatial search biases, perseverative win‐stay errors, or inter‐choice distance. This discrepancy between the effect of inactivations and lesions may result from off‐target effects of inactivations or as‐yet‐unidentified differences between the physical and computerized tasks. Combined with previous evidence that hippocampal damage impairs navigational memory in monkeys, this evidence constrains the role of the hippocampus in spatial memory as being critical for navigational tests that likely involve allocentric spatial memory but not nonnavigational tests that likely involve egocentric spatial memory.
more »
« less
Hippocampal damage attenuates habituation to videos in monkeys
Abstract Monkeys with selective damage to the hippocampus are often unimpaired in matching‐to‐sample tests but are reportedly impaired in visual paired comparison. While both tests assess recognition of previously seen images, delayed matching‐to‐sample may engage active memory maintenance whereas visual paired comparison may not. Passive memory tests that are not rewarded with food and that do not require extensive training may provide more sensitive measures of hippocampal function. To test this hypothesis, we assessed memory in monkeys with hippocampal damage and matched controls by providing them the opportunity to repeatedly view small sets of videos. Monkeys pressed a button to play each video. The same 10 videos were used for six consecutive days, after which 10 new videos were introduced in each of seven cycles of testing. Our measure of memory was the extent to which monkeys habituated with repeated presentations, watching fewer videos per session over time. Monkeys with hippocampal lesions habituated more slowly than did control monkeys, indicating poorer memory for previous viewings. Both groups dishabituated each time new videos were introduced. These results, like those from preferential viewing, suggest that the hippocampus may be especially important for memory of incidentally encoded events.
more »
« less
- Award ID(s):
- 1632477
- PAR ID:
- 10372525
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Hippocampus
- Volume:
- 29
- Issue:
- 11
- ISSN:
- 1050-9631
- Page Range / eLocation ID:
- p. 1121-1126
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The theory that the hippocampus is critical for visual memory and relational cognition has been challenged by discovery of more spared hippocampal tissue than previously reported in H.M., previously unreported extra-hippocampal damage in developmental amnesiacs, and findings that the hippocampus is unnecessary for object-in-context memory in monkeys. These challenges highlight the need for causal tests of hippocampal function in nonhuman primate models. Here, we tested rhesus monkeys on a battery of cognitive tasks including transitive inference, temporal order memory, shape recall, source memory, and image recognition. Contrary to predictions, we observed no robust impairments in memory or relational cognition either within- or between-groups following hippocampal damage. These results caution against over-generalizing from human correlational studies or rodent experimental studies, compel a new generation of nonhuman primate studies, and indicate that we should reassess the relative contributions of the hippocampus proper compared to other regions in visual memory and relational cognition.more » « less
-
null (Ed.)A degraded, black-and-white image of an object, which appears meaningless on first presentation, is easily identified after a single exposure to the original, intact image. This striking example of perceptual learning reflects a rapid (one-trial) change in performance, but the kind of learning that is involved is not known. We asked whether this learning depends on conscious (hippocampus-dependent) memory for the images that have been presented or on an unconscious (hippocampus-independent) change in the perception of images, independently of the ability to remember them. We tested five memory-impaired patients with hippocampal lesions or larger medial temporal lobe (MTL) lesions. In comparison to volunteers, the patients were fully intact at perceptual learning, and their improvement persisted without decrement from 1 d to more than 5 mo. Yet, the patients were impaired at remembering the test format and, even after 1 d, were impaired at remembering the images themselves. To compare perceptual learning and remembering directly, at 7 d after seeing degraded images and their solutions, patients and volunteers took either a naming test or a recognition memory test with these images. The patients improved as much as the volunteers at identifying the degraded images but were severely impaired at remembering them. Notably, the patient with the most severe memory impairment and the largest MTL lesions performed worse than the other patients on the memory tests but was the best at perceptual learning. The findings show that one-trial, long-lasting perceptual learning relies on hippocampus-independent (nondeclarative) memory, independent of any requirement to consciously remember.more » « less
-
The prefrontal cortex is larger than would be predicted by body size or visual cortex volume in great apes compared with monkeys. Because prefrontal cortex is critical for working memory, we hypothesized that recognition memory tests would engage working memory in orangutans more robustly than in rhesus monkeys. In contrast to working memory, the familiarity response that results from repetition of an image is less cognitively taxing and has been associated with nonfrontal brain regions. Across three experiments, we observed a striking species difference in the control of behavior by these two types of memory. First, we found that recognition memory performance in orangutans was controlled by working memory under conditions in which this memory system plays little role in rhesus monkeys. Second, we found that unlike the case in monkeys, familiarity was not involved in recognition memory performance in orangutans, shown by differences with monkeys across three different measures. Memory in orangutans was not improved by use of novel images, was always impaired by a concurrent cognitive load, and orangutans did not accurately identify images seen minutes ago. These results are surprising and puzzling, but do support the view that prefrontal expansion in great apes favored working memory. At least in orangutans, increased dependence on working memory may come at a cost in terms of the availability of familiarity.more » « less
-
null (Ed.)Memory is typically thought of as enabling reminiscence about past experiences. However, memory also informs and guides processing of future experiences. These two functions of memory are often at odds: Remembering specific experiences from the past requires storing idiosyncratic properties that define particular moments in space and time, but by definition such properties will not be shared with similar situations in the future and thus may not be applicable to future situations. We discovered that, when faced with this conflict, the brain prioritizes prediction over encoding. Behavioral tests of recognition and source recall showed that items allowing for prediction of what will appear next based on learned regularities were less likely to be encoded into memory. Brain imaging revealed that the hippocampus was responsible for this interference between statistical learning and episodic memory. The more that the hippocampus predicted the category of an upcoming item, the worse the current item was encoded. This competition may serve an adaptive purpose, focusing encoding on experiences for which we do not yet have a predictive model.more » « less
An official website of the United States government
