The stimuli-responsive self-folding structure is ubiquitous in nature, for instance, the mimosa folds its leaves in response to external touch or heat, and the Venus flytrap snaps shut to trap the insect inside. Thus, modeling self-folding structures has been of great interest to predict the final configuration and understand the folding mechanism. Here, we apply a simple yet effective method to predict the folding angle of the temperature-responsive nanocomposite hydrogel/elastomer bilayer structure manufactured by 3D printing, which facilitates the study of the effect of the inevitable variations in manufacturing and material properties on folding angles by comparing the simulation results with the experimentally measured folding angles. The defining feature of our method is to use thermal expansion to model the temperature-responsive nanocomposite hydrogel rather than the nonlinear field theory of diffusion model that was previously applied. The resulted difference between the simulation and experimentally measured folding angle ( i.e. , error) is around 5%. We anticipate that our method could provide insight into the design, control, and prediction of 3D printing of stimuli-responsive shape morphing ( i.e. , 4D printing) that have potential applications in soft actuators, robots, and biomedical devices.
more »
« less
Microphase Separation‐Driven Sequential Self‐Folding of Nanocomposite Hydrogel/Elastomer Actuators
Abstract Untethered stimuli‐responsive soft materials with programmed sequential self‐folding are of great interest due to their ability to achieve task‐specific shape transformation with complex final configuration. Here, reversible and sequential self‐folding soft actuators are demonstrated by utilizing a temperature‐responsive nanocomposite hydrogel with different folding speeds but the same chemical composition. By varying the UV light intensity during the photo‐crosslinking of the nanocomposite hydrogel, different types of microstructures can be realized via phase separation mechanisms, which allow to control the folding speeds. The self‐folding structures are fabricated by integrating two dissimilar materials (i.e., a nanocomposite hydrogel and an elastomer) into hinge‐based bilayer structures via extrusion‐based 3D printing. It has been demonstrated that the folding kinetics can be accelerated by more than one order of magnitude due to the phase‐separated microstructure formed by the relatively weaker UV intensity (≈10 mW cm‐2) compared to the one formed by stronger UV intensity (≈100 mW cm‐2). 3D structures with sequential self‐folding capabilities are realized by prescribing actuation speeds and folding angles to specific hinges of the nanocomposite hydrogel. Sequential folding box and self‐locking latch structures are fabricated to demonstrate the ability to capture and hold objects underwater.
more »
« less
- Award ID(s):
- 2011924
- PAR ID:
- 10372615
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 32
- Issue:
- 24
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stimuli-responsive hydrogels with self-strengthening properties are promising for the use of autonomous growth and adaptation systems to the surrounding environments by mimicking biological materials. However, conventional stimuli-responsive hydrogels require structural destruction to initiate mechanochemical reactions to grow new polymeric networks and strengthen themselves. Here we report continuous self-strengthening of a nanocomposite hydrogel composed of poly( N -isopropylacrylamide) (PNIPAM) and nanoclay (NC) by using external stimuli such as heat and ionic strength. The internal structures of the NC-PNIPAM hydrogel are rearranged through the swelling–deswelling cycles or immersing in a salt solution, thus its mechanical properties are significantly improved. The effects of concentration of NC in hydrogels, number of swelling–deswelling cycles, and presence of salt in the surrounding environment on the mechanical properties of hydrogels are characterized by nanoindentation and tensile tests. The self-strengthening mechanical performance of the hydrogels is demonstrated by the loading ability. This work may offer promise for applications such as artificial muscles and soft robotics.more » « less
-
Abstract Precise manipulation of nanomaterials has shown great potential in facilitating the fabrication of functional hydrogel nanocomposites in applications such as soft robotics, biomedicine, structural health monitoring, and wearable sensing. Surface acoustic wave (SAW)-based acoustofluidics offers a contactless approach for nanoparticle manipulation. Meanwhile, digital light processing (DLP) has been extensively utilized in the hydrogel printing process due to its high-resolution fabrication capabilities. This study presents an innovative SAW acoustofluidics-assisted DLP system, enabling the patterning of nanoparticles embedded in matrix materials while facilitating programmed light exposure for the controllable photopolymerization of customized hydrogel nanocomposites. Instead of utilizing the acoustic potential field generated by SAWs, we leverage the accompanying electric field due to the piezoelectric effect of the lithium niobate (LiNbO3) substrate to generate electric field, enabling the electric field-driven patterning of multi-walled carbon nanotubes (MWCNTs) Laser Doppler vibrometry confirms the SAW-generated acoustic intensity fields. The analytical simulation together with the scanned data predicted the co-current electric field predicted the distribution of MWCNTs. By applying a programmed light pattern, we successfully fabricated hydrogel nanocomposites in the shape of a VT logo and produced hydrogel nanocomposite sensors. The capabilities of printed hydrogel nanocomposite sensors were demonstrated through beam vibration sensing, proving its potential application in structural health monitoring. The fabricated sensors demonstrated the capability to track finger movements, indicating their potential for wearable sensing applications. In summary, this study offers a unique approach for nanocomposites fabricating multi-material integration and material anisotropy control, thereby facilitating advanced smart material development. Future work will focus on exploring the fabrication of hydrogels containing other types of nanomaterials to enhance material conductivity and achieve other functions, aiming with the goal of developing nanocomposite sensors for applications in soft robotics, biomedicine, structural health monitoring, and wearable sensing.more » « less
-
Abstract Shape morphing of stimuli‐responsive composite hydrogels has received considerable attention in different research fields. Although various multilayer structures with dissimilar materials are studied to achieve shape morphing, combining swellable hydrogel layers with non‐swellable layers results in issues with interface adhesion and structural integrity. In this study, single‐hydrogel‐based bilayer actuators comprising poly(N‐isopropylacrylamide) (PNIPAM) matrices and graphene oxide (GO)–PNIPAM hinges are presented. Upon temperature rising, the PNIPAM hydrogel acts as the passive layer due to the formation of dense microstructures near the surface (i.e., the skin layer effect), whereas the GO‐PNIPAM hydrogel functions as the active layer, maintaining porous due to structural modification by the presence of GO. Under light exposure, the GO‐PNIPAM hinges experience selective heating due to the photothermal effect of GO. Consequently, the resulting bilayer structures exhibit programmable dual‐responsive 3D shape morphing. Additionally, the folding kinetics of these actuators can be adjusted based on the applied stimulus (temperature changes or light), as they are driven by different mechanisms, the skin layer, or photothermal effects, respectively. Furthermore, the hinge‐based bilayer structures demonstrate walking and steering locomotion by light exposure. This approach can lead to advances in soft robotics, biomimetic systems, and autonomous soft actuators in hydrogel‐based systems.more » « less
-
Abstract Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D‐printed LCEs are thermally actuated. Herein, a 3D‐printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D‐printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near‐infrared (NIR) light (808 nm) at 1.4 W cm−2(corresponding to 160 °C) under optimal printing conditions. The 3D‐printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light‐responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s−1(on a flat surface) and 0.216 mm s−1(on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm).more » « less
An official website of the United States government
