Abstract We show that explainable neural networks can identify regions of oceanic variability that contribute predictability on decadal timescales in a fully coupled Earth‐system model. The neural networks learn to use sea‐surface temperature anomalies to predict future continental surface temperature anomalies. We then use a neural‐network explainability method called layerwise relevance propagation to infer which oceanic patterns lead to accurate predictions made by the neural networks. In particular, regions within the North Atlantic Ocean and North Pacific Ocean lend the most predictability for surface temperature across continental North America. We apply the proposed methodology to decadal variability, although the concept is generalizable to other timescales of predictability. Furthermore, while our approach focuses on predictable patterns of internal variability within climate models, it should be generalizable to observational data as well. Our study contributes to the growing evidence that explainable neural networks are important tools for advancing geoscientific knowledge. 
                        more » 
                        « less   
                    
                            
                            Incorporating Uncertainty Into a Regression Neural Network Enables Identification of Decadal State‐Dependent Predictability in CESM2
                        
                    
    
            Abstract Predictable internal climate variability on decadal timescales (2–10 years) is associated with large‐scale oceanic processes, however these predictable signals may be masked by the noisy climate system. One approach to overcoming this problem is investigating state‐dependent predictability—how differences in prediction skill depend on the initial state of the system. We present a machine learning approach to identify state‐dependent predictability on decadal timescales in the Community Earth System Model version 2 pre‐industrial control simulation by incorporating uncertainty estimates into a regression neural network. We leverage the network's prediction of uncertainty to examine state dependent predictability in sea surface temperatures by focusing on predictions with the lowest uncertainty outputs. In particular, we study two regions of the global ocean—the North Atlantic and North Pacific—and find that skillful initial states identified by the neural network correspond to particular phases of Atlantic multi‐decadal variability and the interdecadal Pacific oscillation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1749261
- PAR ID:
- 10372648
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We use neural networks and large climate model ensembles to explore predictability of internal variability in sea surface temperature (SST) anomalies on interannual (1–3 years) and decadal (1–5 and 3–7 years) timescales. We find that neural networks can skillfully predict SST anomalies at these lead times, especially in the North Atlantic, North Pacific, Tropical Pacific, Tropical Atlantic and Southern Ocean. The spatial patterns of SST predictability vary across the nine climate models studied. The neural networks identify “windows of opportunity” where future SST anomalies can be predicted with more certainty. Neural networks trained on climate models also make skillful SST predictions in reconstructed observations, although the skill varies depending on which climate model the network was trained. Our results highlight that neural networks can identify predictable internal variability within existing climate data sets and show important differences in how well patterns of SST predictability in climate models translate to the real world.more » « less
- 
            Abstract An open question in the study of climate prediction is whether internal variability will continue to contribute to prediction skill in the coming decades, or whether predictable signals will be overwhelmed by rising temperatures driven by anthropogenic forcing. We design a neural network that is interpretable such that its predictions can be decomposed to examine the relative contributions of external forcing and internal variability to future regional sea surface temperature (SST) trend predictions in the near-term climate (2020–2050). We show that there is additional prediction skill to be garnered from internal variability in the Community Earth System Model version 2 Large Ensemble, even in a relatively high forcing future scenario. This predictability is especially apparent in the North Atlantic, North Pacific and Tropical Pacific Oceans as well as in the Southern Ocean. We further investigate how prediction skill covaries across the ocean and find three regions with distinct coherent prediction skill driven by internal variability. SST trend predictability is found to be associated with consistent patterns of decadal variability for the grid points within each region.more » « less
- 
            Abstract Subseasonal‐to‐decadal atmospheric prediction skill attained from initial conditions is typically limited by the chaotic nature of the atmosphere. However, for some atmospheric phenomena, prediction skill on subseasonal‐to‐decadal timescales is increased when the initial conditions are in a particular state. In this study, we employ machine learning to identify sea surface temperature (SST) regimes that enhance prediction skill of North Atlantic atmospheric circulation. An ensemble of artificial neural networks is trained to predict anomalous, low‐pass filtered 500 mb height at 7–8 weeks lead using SST. We then use self‐organizing maps (SOMs) constructed from 9 regions within the SST domain to detect state‐dependent prediction skill. SOMs are built using the entire SST time series, and we assess which SOM units feature confident neural network predictions. Four regimes are identified that provide skillful seasonal predictions of 500 mb height. Our findings demonstrate the importance of extratropical decadal SST variability in modulating downstream ENSO teleconnections to the North Atlantic. The methodology presented could aid future forecasting on subseasonal‐to‐decadal timescales.more » « less
- 
            Abstract The North Atlantic Oscillation (NAO) is predictable in climate models at near-decadal timescales. Predictive skill derives from ocean initialization, which can capture variability internal to the climate system, and from external radiative forcing. Herein, we show that predictive skill for the NAO in a very large uninitialized multi-model ensemble is commensurate with previously reported skill from a state-of-the-art initialized prediction system. The uninitialized ensemble and initialized prediction system produce similar levels of skill for northern European precipitation and North Atlantic SSTs. Identifying these predictable components becomes possible in a very large ensemble, confirming the erroneously low signal-to-noise ratio previously identified in both initialized and uninitialized climate models. Though the results here imply that external radiative forcing is a major source of predictive skill for the NAO, they also indicate that ocean initialization may be important for particular NAO events (the mid-1990s strong positive NAO), and, as previously suggested, in certain ocean regions such as the subpolar North Atlantic ocean. Overall, we suggest that improving climate models’ response to external radiative forcing may help resolve the known signal-to-noise error in climate models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
