Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We use neural networks and large climate model ensembles to explore predictability of internal variability in sea surface temperature (SST) anomalies on interannual (1–3 years) and decadal (1–5 and 3–7 years) timescales. We find that neural networks can skillfully predict SST anomalies at these lead times, especially in the North Atlantic, North Pacific, Tropical Pacific, Tropical Atlantic and Southern Ocean. The spatial patterns of SST predictability vary across the nine climate models studied. The neural networks identify “windows of opportunity” where future SST anomalies can be predicted with more certainty. Neural networks trained on climate models also make skillful SST predictions in reconstructed observations, although the skill varies depending on which climate model the network was trained. Our results highlight that neural networks can identify predictable internal variability within existing climate data sets and show important differences in how well patterns of SST predictability in climate models translate to the real world.more » « less
-
Abstract Earth system models are powerful tools to simulate the climate response to hypothetical climate intervention strategies, such as stratospheric aerosol injection (SAI). Recent simulations of SAI implement a tool from control theory, called a controller, to determine the quantity of aerosol to inject into the stratosphere to reach or maintain specified global temperature targets, such as limiting global warming to 1.5°C above pre‐industrial temperatures. This work explores how internal (unforced) climate variability can impact controller‐determined injection amounts using the Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE‐SAI) simulations. Since the ARISE‐SAI controller determines injection amounts by comparing global annual‐mean surface temperature to predetermined temperature targets, internal variability that impacts temperature can impact the total injection amount as well. Using an offline version of the ARISE‐SAI controller and data from Earth system model simulations, we quantify how internal climate variability and volcanic eruptions impact injection amounts. While idealized, this approach allows for the investigation of a large variety of climate states without additional simulations and can be used to attribute controller sensitivities to specific modes of internal variability.more » « less
-
Abstract An open question in the study of climate prediction is whether internal variability will continue to contribute to prediction skill in the coming decades, or whether predictable signals will be overwhelmed by rising temperatures driven by anthropogenic forcing. We design a neural network that is interpretable such that its predictions can be decomposed to examine the relative contributions of external forcing and internal variability to future regional sea surface temperature (SST) trend predictions in the near-term climate (2020–2050). We show that there is additional prediction skill to be garnered from internal variability in the Community Earth System Model version 2 Large Ensemble, even in a relatively high forcing future scenario. This predictability is especially apparent in the North Atlantic, North Pacific and Tropical Pacific Oceans as well as in the Southern Ocean. We further investigate how prediction skill covaries across the ocean and find three regions with distinct coherent prediction skill driven by internal variability. SST trend predictability is found to be associated with consistent patterns of decadal variability for the grid points within each region.more » « less
-
Abstract Soil moisture (SM) influences near‐surface air temperature by partitioning downwelling radiation into latent and sensible heat fluxes, through which dry soils generally lead to higher temperatures. The strength of this coupled soil moisture‐temperature (SM‐T) relationship is not spatially uniform, and numerous methods have been developed to assess SM‐T coupling strength across the globe. These methods tend to involve either idealized climate‐model experiments or linear statistical methods which cannot fully capture nonlinear SM‐T coupling. In this study, we propose a nonlinear machine‐learning (ML)‐based approach for analyzing SM‐T coupling and apply this method to various mid‐latitude regions using historical reanalysis datasets. We first train convolutional neural networks (CNNs) to predict daily maximum near‐surface air temperature (TMAX) given daily SM and geopotential height fields. We then use partial dependence analysis to isolate the average sensitivity of each CNN's TMAX prediction to the SM input under daily atmospheric conditions. The resulting SM‐T relationships broadly agree with previous assessments of SM‐T coupling strength. Over many regions, we find nonlinear relationships between the CNN's TMAX prediction and the SM input map. These nonlinearities suggest that the coupled interactions governing SM‐T relationships vary under different SM conditions, but these variations are regionally dependent. We also apply this method to test the influence of SM memory on SM‐T coupling and find that our results are consistent with previous studies. Although our study focuses specifically on local SM‐T coupling, our ML‐based method can be extended to investigate other coupled interactions within the climate system using observed or model‐derived datasets.more » « less
-
Abstract Two distinct features of anthropogenic climate change, warming in the tropical upper troposphere and warming at the Arctic surface, have competing effects on the midlatitude jet stream’s latitudinal position, often referred to as a “tug-of-war.” Studies that investigate the jet’s response to these thermal forcings show that it is sensitive to model type, season, initial atmospheric conditions, and the shape and magnitude of the forcing. Much of this past work focuses on studying a simulation’s response to external manipulation. In contrast, we explore the potential to train a convolutional neural network (CNN) on internal variability alone and then use it to examine possible nonlinear responses of the jet to tropospheric thermal forcing that more closely resemble anthropogenic climate change. Our approach leverages the idea behind the fluctuation–dissipation theorem, which relates the internal variability of a system to its forced response but so far has been only used to quantify linear responses. We train a CNN on data from a long control run of the CESM dry dynamical core and show that it is able to skillfully predict the nonlinear response of the jet to sustained external forcing. The trained CNN provides a quick method for exploring the jet stream sensitivity to a wide range of tropospheric temperature tendencies and, considering that this method can likely be applied to any model with a long control run, could be useful for early-stage experiment design.more » « less
An official website of the United States government
