skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cenozoic Antarctic Peninsula Temperatures and Glacial Erosion Signals From a Multi‐Proxy Biomarker Study
Abstract Terrestrial climate records for Antarctica, beyond the age limit of ice cores, are restricted to the few unglaciated areas with exposed rock outcrops. Marine sediments on Antarctica's continental shelves contain records of past oceanic and terrestrial environments that can provide important insights into Antarctic climate evolution. The SHALDRIL II (Shallow Drilling on the Antarctic Continental Margin) expedition recovered sedimentary sequences from the eastern side of the Antarctic Peninsula of late Eocene, Oligocene, middle Miocene, and early Pliocene age that provides insights into Cenozoic Antarctic climate and ice sheet development. Here, we use biomarker data to assess atmospheric and oceanic temperatures and glacial reworking from the late Eocene to the early Pliocene. Analyses of hopanes andn‐alkanes indicate increased erosion of mature (thermally altered) soil biomarker components reworked by glacial erosion. Branched glycerol dialkyl glycerol tetraethers from soil bacteria suggest similar air temperatures of 12°C ± 1°C (1σ,n = 46) for months above freezing for Eocene, Oligocene, and Miocene timeslices but much colder (and likely shorter) periods of thaw during the Pliocene (5°C ± 1°C,n = 4) on the Antarctic Peninsula. TEX86‐based (Tetraether index of 86 carbons) sea surface temperature estimates indicate ocean cooling from 7°C ± 3°C (n = 10) in the Miocene to 3°C ± 1°C (n = 3) in the Pliocene, consistent with deep ocean cooling. Resulting temperature records provide useful constraints for ice sheet and climate model simulations seeking to improve understanding of ice sheet response under a range of climate conditions.  more » « less
Award ID(s):
1908548
PAR ID:
10372659
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
37
Issue:
9
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When a continental sized ice sheet first formed on Antarctica across the Eocene-Oligocene boundary the bed topography was significantly different to the modern day bed. As the bed evolved due to the effects of glacial erosion, sedimentation, subsidence and tectonics, it is hypothesised that the ice sheet sensitivity to climate forcing also changed. This hypothesis has been tested in a number of recent ice sheet modelling studies, but these efforts have been limited by the use of idealised bed topography estimates. Here we explore the ice sheet sensitivity to evolving bed topography using a recently produced suite of palaeotopographies for the Eocene-Oligocene and Oligocene-Miocene transitions, the mid-Miocene climatic optimum, and the late Miocene to early Pliocene. Al- though we present results for all of these intervals, we are particularly interested in whether bed topography played a role in Antarctic ice sheet stabilisation following the mid-Miocene climatic optimum and the final descent into the icehouse. 
    more » « less
  2. Abstract The Eocene‐Oligocene transition (EOT) marks the onset of Antarctic glaciation at 33.7 Ma. Although the benthic oxygen isotope record defines the major continental ice sheet expansion, recent sedimentary and geochemical evidence suggests the presence of earlier ephemeral ice sheets. Sediment cores from Ocean Drilling Program Legs 119 and 188 in Prydz Bay provide an archive of conditions in a major drainage system of East Antarctica. We study biomarker and microfossil evidence to discern how the vegetation and climate shifted between 36 and 33 Ma. Pollen was dominated by reworked Permian Glossopterid gymnosperms; however, penecontemporaneous Eocene pollen assemblages indicate that some vegetation survived the glacial advances. At the EOT, brGDGT soil biomarkers indicate abrupt cooling from 13°C to 8°C and soil pH increases from 6.0 to 6.7, suggesting drying which is further supported by plant wax hydrogen and carbon isotopic shifts of 20‰ and 1.1‰, respectively, and evidence for drying from weathering proxies. Although the terrestrial soil biomarker influx mostly precludes the use of TEX86, we find sea surface temperatures of 12°C in the late Eocene cooling to 8°C at the EOT. Marine productivity undergoes a sustained increase after the glacial advance, likely promoted by enhanced ocean circulation. Between the two glacial surge events of the Priabonian Oxygen Maximum at 37.3 Ma and the EOT at 33.7 Ma, we observe warming of 2–5°C at 35.7 and 34.7 Ma, with increase in penecontemporaneous pollen and enhanced marine productivity, capturing the last flickers of Antarctic warmth. 
    more » « less
  3. null (Ed.)
    Antarctic ice sheet and climate evolution during the mid-Miocene has direct relevance for understanding ice sheet (in)stability and the long-term response to elevated atmospheric CO2in the future. Geologic records reconstruct major fluctuations in the volume and extent of marine and terrestrial ice during the mid-Miocene, revealing a dynamic Antarctic ice-sheet response to past climatic variations. We use an ensemble of climate – ice sheet – vegetation model simulations spanning a range of CO2concentrations, Transantarctic Mountain uplift scenarios, and glacial/interglacial climatic conditions to identify climate and ice-sheet conditions consistent with Antarctic mid-Miocene terrestrial and marine geological records. We explore climatic variability at both continental and regional scales, focusing specifically on Victoria Land and Wilkes Land Basin regions using a high-resolution nested climate model over these domains. We find that peak warmth during the Miocene Climate Optimum is characterized by a thick terrestrial ice sheet receded from the coastline under high CO2concentrations. During the Middle Miocene Climate Transition, CO2episodically dropped below a threshold value for marine-based ice expansion. Comparison of model results with geologic data support ongoing Transantarctic Mountain uplift throughout the mid-Miocene. Modeled ice sheet dynamics over the Wilkes Land Basin were highly sensitive to CO2concentrations. This work provides a continental-wide context for localized geologic paleoclimate and vegetation records, integrating multiple datasets to reconstruct snapshots of ice sheet and climatic conditions during a pivotal period in Earth’s history. 
    more » « less
  4. Abstract The Eocene-Oligocene Transition atc.34 million years ago (Ma) marked the global change from greenhouse to icehouse and the establishment of the East Antarctic Ice Sheet (EAIS). How the ice-sheet behaviour changed during interglacials across this climate transition is poorly understood. We analysed major, trace and rare earth elemental data of late Eocene interglacial mudstone from Prydz Bay at Ocean Drilling Program Site 1166 and early Oligocene interglacial mudstone from Integrated Ocean Drilling Program Site U1360 on the Wilkes Land continental shelf. Both sites have comparable glaciomarine depositional settings. Lithofacies and provenance at Site 1166 in Prydz Bay are indicative of a late Eocene glacial retreat in the Lambert Graben. Palaeoclimate proxies, including the Chemical Index of Alteration, mean annual temperature and mean annual precipitation, show a dominant warm and humid palaeoclimate for the late Eocene interglacial. In contrast, at Site U1360, in the early Oligocene, the provenance and interglacial weathering regime remained relatively stable with conditions of physical weathering. These results confirm that the EAIS substantially retreated periodically during late Eocene interglacials and that subglacial basins probably remained partially glaciated during interglacials in the earliest Oligocene. 
    more » « less
  5. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently locally retreating because of shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in ice sheet extent during the late Neogene and Quaternary. Climate and ice sheet models indicate a fundamental role for oceanic heat in controlling ice sheet variability over at least the past 20 My. Although evidence for past ice sheet variability is available from ice-proximal marine settings, sedimentary sequences from the continental shelf and rise are required to evaluate the extent of past ice sheet variability and the associated forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five sites from the outer continental shelf to rise in the central Ross Sea to resolve Neogene and Quaternary relationships between climatic and oceanic change and WAIS evolution. The Ross Sea was targeted because numerical ice sheet models indicate that this sector of Antarctica responds sensitively to changes in ocean heat flux. Expedition 374 was designed for optimal data-model integration to enable an improved understanding of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the Miocene Climatic Optimum). The principal goals of Expedition 374 were to: 1. Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; 2. Reconstruct ice-proximal oceanic and atmospheric temperatures to quantify past polar amplification; 3. Assess the role of oceanic forcing (e.g., temperature and sea level) on AIS variability; 4. Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and 5. Reconstruct Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet variability, and global climate. To achieve these objectives, postcruise studies will: 1. Use data and models to reconcile intervals of maximum Neogene and Quaternary ice advance and retreat with far-field records of eustatic sea level; 2. Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; 3. Reconstruct Neogene and Quaternary sea ice margin fluctuations and correlate these records to existing inner continental shelf records; 4. Examine relationships among WAIS variability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and 5. Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 departed from Lyttelton, New Zealand, in January 2018 and returned in March 2018. We recovered 1292.70 m of high-quality core from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite and diatom-rich mudstone penetrating seismic Ross Sea Unconformity 4 (RSU4). The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the late early and middle Miocene. At Site U1522, we cored a discontinuous late Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf with the primary objective of penetrating and dating RSU3, which is interpreted to reflect the first continental shelf–wide expansion of East and West Antarctic ice streams. Site U1523, located on the outer continental shelf, targeted a sediment drift beneath the westward-flowing Antarctic Slope Current (ASC) to test the hypothesis that changes in ASC vigor regulate ocean heat flux onto the continental shelf and thus ice sheet mass balance. We also cored two sites on the continental rise and slope. At Site U1524, we recovered a Plio–Pleistocene sedimentary sequence from the levee of the Hillary Canyon, one of the largest conduits of Antarctic Bottom Water from the continental shelf to the abyssal ocean. Site U1524 was designed to penetrate into middle Miocene and older strata, but coring was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (Site U1525) to core a single hole designed to complement the record at Site U1524. We returned to Site U1524 after the sea ice cleared and cored Hole U1524C with the rotary core barrel system with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF because of a mechanical failure with the vessel that resulted in termination of all drilling operations and forced us to return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives. In particular, we were not able to recover continuous middle Miocene sequences from the continental rise designed to complement the discontinuous record from continental shelf Site U1521. The mechanical failure also meant we could not recover cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a continental shelf-to-rise Miocene transect, records from Sites U1522, U1524, and U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL) can be integrated to develop a shelf-to-rise Plio–Pleistocene transect. 
    more » « less