skip to main content


Title: Late Eocene Record of Hydrology and Temperature From Prydz Bay, East Antarctica
Abstract

The Eocene‐Oligocene transition (EOT) marks the onset of Antarctic glaciation at 33.7 Ma. Although the benthic oxygen isotope record defines the major continental ice sheet expansion, recent sedimentary and geochemical evidence suggests the presence of earlier ephemeral ice sheets. Sediment cores from Ocean Drilling Program Legs 119 and 188 in Prydz Bay provide an archive of conditions in a major drainage system of East Antarctica. We study biomarker and microfossil evidence to discern how the vegetation and climate shifted between 36 and 33 Ma. Pollen was dominated by reworked Permian Glossopterid gymnosperms; however, penecontemporaneous Eocene pollen assemblages indicate that some vegetation survived the glacial advances. At the EOT, brGDGT soil biomarkers indicate abrupt cooling from 13°C to 8°C and soil pH increases from 6.0 to 6.7, suggesting drying which is further supported by plant wax hydrogen and carbon isotopic shifts of 20‰ and 1.1‰, respectively, and evidence for drying from weathering proxies. Although the terrestrial soil biomarker influx mostly precludes the use of TEX86, we find sea surface temperatures of 12°C in the late Eocene cooling to 8°C at the EOT. Marine productivity undergoes a sustained increase after the glacial advance, likely promoted by enhanced ocean circulation. Between the two glacial surge events of the Priabonian Oxygen Maximum at 37.3 Ma and the EOT at 33.7 Ma, we observe warming of 2–5°C at 35.7 and 34.7 Ma, with increase in penecontemporaneous pollen and enhanced marine productivity, capturing the last flickers of Antarctic warmth.

 
more » « less
Award ID(s):
1908548 1743643
NSF-PAR ID:
10449001
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
36
Issue:
4
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Eocene‐Oligocene Transition (EOT) at ∼34 Ma marked a climatic shift from greenhouse to icehouse conditions, toward long‐lasting lower global temperatures and a continental ice sheet in the Antarctic. We report on sedimentological and inorganic geochemical results across the EOT at Ocean Drilling Program (ODP) Site 696 in the Weddell Sea, within the Antarctic limb of the Atlantic circulation. The geochemical composition of detrital, authigenic and biogenic marine sediment components, and sortable silt proxies demonstrate the impact of ice growth on high latitude water masses. Sortable silt grain size and Zr/Rb ratios attest to a period of vigorous circulation at ∼36.2–35.8 Ma, coincident with a known warm interval in the Southern Ocean. Across the EOT, detrital provenance suggests that regional ice growth in the western Weddell Sea was stepwise, first expanding in the Antarctic Peninsula, followed by parts of West Antarctica. In conjunction with regional ice growth, high uranium enrichment factors (U EF) in sediments spanning the EOT interval indicate anoxic conditions in the sediment with evidence of carbonate dissolution. Following glacial expansion and sea‐ice formation at ∼33.6 Ma, a return to oxic conditions and carbonate preservation is observed with excess barium and phosphorous indicative of an increase in productivity, and potentially carbon export. Our results highlight the important connections between ice growth and the changing properties of high‐latitude water masses at the EOT with impacts on the global ocean circulation.

     
    more » « less
  2. The Eocene-Oligocene Transition (EOT) at ~34 Ma marked a climatic shift from greenhouse to icehouse conditions, towards long-lasting lower global temperatures and a continental ice sheet in the Antarctic. The relative importance of ocean gateways, pCO2, and ice growth as drivers of this transition are not fully understood. We report on sedimentological and inorganic geochemical results across the EOT at Ocean Drilling Program (ODP) Site 696 in the Weddell Sea, within the Antarctic limb of the Atlantic circulation. The geochemical composition of detrital, authigenic and biogenic marine sediment components, and sortable silt proxies demonstrate the impact of ice growth on high latitude water masses. Sortable silt grain size and Zr/Rb ratios attest to a period of vigorous circulation at ~36.2-35.8 Ma, coincident with a known warm interval in the Southern Ocean. Across the EOT, detrital provenance suggests that regional ice growth in the western Weddell Sea was stepwise, first expanding in the Antarctic Peninsula, followed by parts of West Antarctica. In conjunction with regional ice growth, high uranium enrichment factors (U EF) in sediments spanning the EOT interval indicate anoxic conditions in the sediment with evidence of carbonate dissolution. Following glacial expansion and sea-ice formation at ~33.6 Ma, a return to oxic conditions and carbonate preservation is observed with excess barium and phosphorous indicative of an increase in productivity, and potentially carbon export. Our results highlight the important connections between ice growth and the changing properties of high-latitude water masses at the EOT with impacts on the global ocean circulation. 
    more » « less
  3. Abstract

    Terrestrial climate records for Antarctica, beyond the age limit of ice cores, are restricted to the few unglaciated areas with exposed rock outcrops. Marine sediments on Antarctica's continental shelves contain records of past oceanic and terrestrial environments that can provide important insights into Antarctic climate evolution. The SHALDRIL II (Shallow Drilling on the Antarctic Continental Margin) expedition recovered sedimentary sequences from the eastern side of the Antarctic Peninsula of late Eocene, Oligocene, middle Miocene, and early Pliocene age that provides insights into Cenozoic Antarctic climate and ice sheet development. Here, we use biomarker data to assess atmospheric and oceanic temperatures and glacial reworking from the late Eocene to the early Pliocene. Analyses of hopanes andn‐alkanes indicate increased erosion of mature (thermally altered) soil biomarker components reworked by glacial erosion. Branched glycerol dialkyl glycerol tetraethers from soil bacteria suggest similar air temperatures of 12°C ± 1°C (1σ,n = 46) for months above freezing for Eocene, Oligocene, and Miocene timeslices but much colder (and likely shorter) periods of thaw during the Pliocene (5°C ± 1°C,n = 4) on the Antarctic Peninsula. TEX86‐based (Tetraether index of 86 carbons) sea surface temperature estimates indicate ocean cooling from 7°C ± 3°C (n = 10) in the Miocene to 3°C ± 1°C (n = 3) in the Pliocene, consistent with deep ocean cooling. Resulting temperature records provide useful constraints for ice sheet and climate model simulations seeking to improve understanding of ice sheet response under a range of climate conditions.

     
    more » « less
  4. Abstract Large Oligocene Antarctic ice sheets co-existed with warm proximal waters offshore Wilkes Land. Here we provide a broader Southern Ocean perspective to such warmth by reconstructing the strength and variability of the Oligocene Australian-Antarctic latitudinal sea surface temperature gradient. Our Oligocene TEX 86 -based sea surface temperature record from offshore southern Australia shows temperate (20–29 °C) conditions throughout, despite northward tectonic drift. A persistent sea surface temperature gradient (~5–10 °C) exists between Australia and Antarctica, which increases during glacial intervals. The sea surface temperature gradient increases from ~26 Ma, due to Antarctic-proximal cooling. Meanwhile, benthic foraminiferal oxygen isotope decline indicates ice loss/deep-sea warming. These contrasting patterns are difficult to explain by greenhouse gas forcing alone. Timing of the sea surface temperature cooling coincides with deepening of Drake Passage and matches results of ocean model experiments that demonstrate that Drake Passage opening cools Antarctic proximal waters. We conclude that Drake Passage deepening cooled Antarctic coasts which enhanced thermal isolation of Antarctica. 
    more » « less
  5. Bendick, R. (Ed.)
    The Qaidam Basin in the core area of arid Inner Asia has been considered undergoing continuous aridification over the Cenozoic. However, the Qaidam Basin is marked with expanded lacustrine sedimentation during the Oligocene, which contrasts with the fluvial or deltaic facies stratigraphically below (Eocene) and above (Miocene-present). The Oligocene lacustrine expansion challenges the idea of persistent aridification. To solve the conundrum, we reconstruct a long-term compound-specific hydrogen isotope (δ2H) record from sedimentary leaf wax n-alkanes to evaluate the paleoclimatic context before, during, and after the Oligocene lacustrine expansion. The δ2H results reveal three shifts at ca. 40 Ma, 34 Ma, and 24 Ma. The leaf wax δ2H values range from −176.8to −166.7from 51 to 40 Ma, followed by an abrupt increase of 23.9at 40 Ma. We interpret this rapid increase as enhanced aridification due to the coeval retreat of the Paratethys Sea from the region. At 34 Ma, the δ2H plunges across the Eocene-Oligocene transition (EOT). Post-EOT δ2H values are the lowest, vary with high amplitude from −187.1to −153.2, and are associated with the lacustrine facies expansion, indicating a wetter climate. By compiling the regional isotopic proxy studies, we observe the contrasting patterns in paleohydrology conditions since the EOT: the relaxation of aridity in the westerlies region versus the enhanced aridification in the East Asian summer monsoon region. We interpret that the west-east contrasting patterns represent the different climatic responses to global cooling: wetting in the west as a result of the enhanced moisture transport via westerlies replacing the subtropical high, and drying in the east due to the reduction in moisture content associated with weakening East Asian summer monsoon. Wetting in Inner Asia is synchronous with cooling in the ocean (North Atlantic) and on land (Xining Basin). Since 24 Ma, δ2H increases in response to warming during the latest Oligocene to the early Miocene when the subtropical high re-occupied Inner Asia, causing the aridity. This study reveals a dynamic climate in Inner Asia with different mechanisms responding to global change. 
    more » « less