Forest leaf area has enormous leverage on the carbon cycle because it mediates both forest productivity and resilience to climate extremes. Despite widespread evidence that trees are capable of adjusting to changes in environment across both space and time through modifying carbon allocation to leaves, many vegetation models use fixed carbon allocation schemes independent of environment, which introduces large uncertainties into predictions of future forest responses to atmospheric CO2fertilization and anthropogenic climate change. Here, we develop an optimization‐based model, whereby tree carbon allocation to leaves is an emergent property of environment and plant hydraulic traits. Using a combination of meta‐analysis, observational datasets, and model predictions, we find strong evidence that optimal hydraulic–carbon coupling explains observed patterns in leaf allocation across large environmental and CO2concentration gradients. Furthermore, testing the sensitivity of leaf allocation strategy to a diversity in hydraulic and economic spectrum physiological traits, we show that plant hydraulic traits in particular have an enormous impact on the global change response of forest leaf area. Our results provide a rigorous theoretical underpinning for improving carbon cycle predictions through advancing model predictions of leaf area, and underscore that tree‐level carbon allocation to leaves should be derived from first principles using mechanistic plant hydraulic processes in the next generation of vegetation models.
Plant functional traits provide a link in process‐based vegetation models between plant‐level physiology and ecosystem‐level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large‐scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type‐specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.
more » « less- PAR ID:
- 10372677
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 25
- Issue:
- 12
- ISSN:
- 1354-1013
- Format(s):
- Medium: X Size: p. 4008-4021
- Size(s):
- p. 4008-4021
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions
Summary Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf‐level photosynthetic capacity. Whole‐plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections.
-
Abstract Terrestrial biosphere models can help identify physical processes that control carbon dynamics, including land‐atmosphere CO2fluxes, and have the potential to project the terrestrial ecosystem response to changing climate. It is important to identify ecosystem processes most responsible for model predictive uncertainty and design improved model representation and observational system studies to reduce that uncertainty. Here we identified model parameters that contribute the most uncertainty to long‐term (~100 years) projections of net ecosystem exchange, net primary production, and aboveground biomass within a mechanistic terrestrial biosphere model (Ecosystem Demography, version 2.1) ED2. An uncertainty analysis identified parameters that represent the quantum efficiency of light to photosynthetic conversion, leaf respiration and soil‐plant water transfer as the highest contributors to model uncertainty regardless of time frame (annual, decadal, and centennial) and output (e.g., net ecosystem exchange, net primary production, aboveground biomass). Contrary to expectations, the contribution of successional processes related to reproduction, competition, and mortality did not increase as the time scale increased. These findings suggest that uncertainty in the parameters governing short‐term ecosystem processes remains the most significant bottleneck to reducing predictive uncertainty. Key actions to reduce parameter uncertainty include more leaf‐level trait measurements across multiple sites for quantum efficiency and leaf respiration rate. Further, the empirical representation of soil‐plant water transfer should be replaced with a mechanistic, hydraulic representation of water flow, which can be constrained with direct measurements. This analysis focused on aboveground ecosystem processes. The impact of belowground carbon cycling, initial conditions, and meteorological forcing should be addressed in future studies.
-
Synopsis Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth’s ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.
-
The fluxes of energy, water, and carbon from terrestrial ecosystems influence the atmosphere. Land–atmosphere feedbacks can intensify extreme climate events like severe droughts and heatwaves because low soil moisture decreases both evaporation and plant transpiration and increases local temperature. Here, we combine data from a network of temperate and boreal eddy covariance towers, satellite data, plant trait datasets, and a mechanistic vegetation model to diagnose the controls of soil moisture feedbacks to drought. We find that climate and plant functional traits, particularly those related to maximum leaf gas exchange rate and water transport through the plant hydraulic continuum, jointly affect drought intensification. Our results reveal that plant physiological traits directly affect drought intensification and indicate that inclusion of plant hydraulic transport mechanisms in models may be critical for accurately simulating land–atmosphere feedbacks and climate extremes under climate change.more » « less