Annealed bulk crystals of barium titanate (BaTiO3) exhibit persistent photoconductivity (PPC) at room temperature. Samples were annealed in a flowing gas of humid argon and hydrogen, with a higher flow rate corresponding to larger PPC. When exposed to sub-bandgap light, a broad infrared (IR) absorption peak appears at 5000 cm−1(2 μm), attributed to polaronic or free-carrier absorption from electrons in the conduction band. Along with the increased IR absorption, electrical resistance is reduced by a factor of approximately two. The threshold photon energy for PPC is 2.9 eV, similar to the case of SrTiO3. This similarity suggests that the mechanisms are similar: an electron in substitutional hydrogen (HO) is photoexcited into the conduction band, causing the proton to leave the oxygen vacancy and attach to a host oxygen atom. The barrier to recover to the ground state is large such that PPC persists at room temperature.
more »
« less
Room temperature flash of single crystal titania: Electronic and optical properties
Abstract A single‐crystal specimen of rutile (titania) was flashed repetitively, while increasing the electric field after each cycle. As expected, the flash onset temperature continued to drop modestly at higher fields. However, when the field was increased from 400 to 450 V cm–1, the flashed onset fell dramatically down to room temperature. We have investigated the electrical and optical properties of this room temperature flashed specimen (called SZ). The specimen was electronically conducting. Optical absorption spectroscopy revealed a narrow band of new energy levels that were generated just below the conduction band. The gap between the conduction band and this flash‐induced energy level agreed with the peak in the electroluminescence spectrum. Optical second harmonic generation (SHG) is reported. The flash‐on condition significantly lowered the SHG, which rebounded when the flash was turned off. This result suggests that the structure becomes more centrosymmetric in the state of flash, which may represent a disordered state of defects. The possibility of studying flash behavior at room temperature, without a furnace (as in SZ type specimens), opens a considerable simplification for in‐situ characterization of flash behavior. For example, a possible relationship between memristor physics and the flash phenomenon can be studied.
more »
« less
- Award ID(s):
- 2011839
- PAR ID:
- 10372708
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 106
- Issue:
- 1
- ISSN:
- 0002-7820
- Format(s):
- Medium: X Size: p. 46-52
- Size(s):
- p. 46-52
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.more » « less
-
Cubic boron nitride (cBN) is a relatively less studied wide bandgap semiconductor despite its many promising mechanical, thermal, and electronic properties. We report on the electronic, structural, and optical characterization of commercial cBN crystal platelets. Temperature dependent transport measurements revealed the charge limited diode behavior of the cBN crystals. The equilibrium Fermi level was determined to be 0.47 eV below the conduction band, and the electron conduction was identified as n-type. Unirradiated dark and amber colored cBN crystals displayed broad photoluminescence emission peaks centered around different wavelengths. RC series zero phonon line defect emission peaks were observed at room temperature from the electron beam irradiated and oxygen ion implanted cBN crystals, making this material a promising candidate for high power microwave devices, next generation power electronics, and future quantum sensing applications.more » « less
-
Record-low p-type resistivities of 9.7 and 37 Ω cm were achieved in Al0.7Ga0.3N and Al0.8Ga0.2N films, respectively, grown on single-crystal AlN substrate by metalorganic chemical vapor deposition. A two-band conduction model was introduced to explain the anomalous thermal behavior of resistivity and the Hall coefficient. Relatively heavy Mg doping (5 × 1019 cm−3), in conjunction with compensation control, enabled the formation of an impurity band exhibiting a shallow activation energy of ∼30 meV for a wide temperature range. Valence band conduction associated with a large Mg ionization energy was dominant above 500 K. The apparently anomalous results deviating from the classical semiconductor physics were attributed to fundamentally different Hall scattering factors for impurity and valence band conduction. This work demonstrates the utility of impurity band conduction to achieve technologically relevant p-type conductivity in Al-rich AlGaN.more » « less
-
Abstract Transition metald-electron oxides with an odd number of electrons per unit cell are expected to form metals with partially occupied energy bands, but exhibit in fact a range of behaviors, being either insulators, or metals, or having insulator-metal transitions. Traditional explanations involved predominantly electron-electron interactions in fixed structural symmetry. The present work focuses instead on the role of symmetry breaking local structural motifs. Viewing the previously observed V-V dimerization in VO2as a continuous knob, reveals in density functional calculations the splitting of an isolated flat band from the broad conduction band. This leads past a critical percent dimerization to the formation of the insulating phase while lowering the total energy. In VO2this transition is found to have a rather low energy barrier approaching the thermal energy at room temperature, suggesting energy-efficient switching in neuromorphic computing. Interestingly, sufficient V-V dimerization suppresses magnetism, leading to the nonmagnetic insulating state, whereas magnetism appears when dimerization is reduced, forming a metallic state. This study opens the way to design novel functional quantum materials with symmetry breaking-induced flat bands.more » « less
An official website of the United States government
