skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Template‐Free Scalable Fabrication of Linearly Periodic Microstructures by Controlling Ribbing Defects Phenomenon in Forward Roll Coating for Multifunctional Applications
Abstract Periodic micro/nanoscale structures from nature have inspired the scientific community to adopt surface design for various applications, including superhydrophobic drag reduction. One primary concern of practical applications of such periodic microstructures remains the scalability of conventional microfabrication technologies. This study demonstrates a simple template‐free scalable manufacturing technique to fabricate periodic microstructures by controlling the ribbing defects in the forward roll coating. Viscoelastic composite coating materials are designed for roll‐coating using carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), which helps achieve a controllable ribbing with a periodicity of 114–700 µm. Depending on the process parameters, the patterned microstructures transition from the linear alignment to a random structure. The periodic microstructure enables hydrophobicity as the water contact angles of the samples ranged from 128° to 158°. When towed in a static water pool, a model boat coated with the microstructure film shows 7%–8% faster speed than the boat with a flat PDMS film. The CNT addition shows both mechanical and electrical properties improvement. In a mechanical scratch test, the cohesive failure of the CNT‐PDMS film occurs in ≈90% higher force than bare PDMS. Moreover, the nonconductive bare PDMS shows sheet resistance of 747.84–22.66 Ω □−1with 0.5 to 2.5 wt% CNT inclusion.  more » « less
Award ID(s):
2031558 2030404
PAR ID:
10372763
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
9
Issue:
27
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The manufacturing of thin films with structured surfaces by large‐scale rolling has distinct advantages over other techniques, such as lithography, due to scalability. However, it is not well understood or quantified how processing conditions can affect the microstructure at different physical scales. Hence, the objective of this investigation is to develop a validated computational model of the symmetric forward‐roll coating process to understand, predict, and control the morphology of carbon nanotube (CNT)–polydimethylsiloxane (PDMS) pastes. The effects of the thin‐film rheological properties and the roller gap on the ribbing behavior are investigated and a ribbing instability prediction model is formulated from experimental measurements and computational predictions. The CNT–PDMS thin‐film system is modeled by a nonlinear implicit dynamic finite‐element method that accounts for ribbing instabilities, large displacements, rolling contact, and material viscoelasticity. Dynamic mechanical analysis is used to obtain the viscoelastic properties of the CNT–PDMS paste for various CNT weight distributions. Furthermore, a Morris sensitivity analysis is conducted to obtain insights on the dominant predicted characteristics pertaining to the ribbing microstructure. Based on the sensitivity analysis, a critical ribbing aspect ratio is identified for the CNT–PDMS system corresponding to a critical roller gap. 
    more » « less
  2. Abstract Tailored ribbing structures are obtained by large‐scale rolling in polymer PDMS thin‐films by adding carbon nanotubes (CNT) inclusions, which significantly improved the mechanical behavior of systems subjected to dynamic compressive strain rates. A nonlinear explicit dynamic three‐dimensional finite‐element (FE) scheme is used to understand and predict the thermomechanical response of the manufactured ribbed thin‐film structures subjected to dynamic in‐plane compressive loading. Representative volume element (RVE) FE models of the ribbed thin‐films are subjected to strain rates as high as 104s−1in both the transverse and parallel ribbing directions. Latin Hypercube Sampling of the microstructural parameters, as informed from experimental observations, provide the microstructurally based RVEs. An interior‐point optimization routine is also employed on a regression model trained from the FE predictions that can be used to design ribbed materials for multifunctional applications. The model verifies that damage can be mitigated in CNT‐PDMS systems subjected to dynamic compressive loading conditions by controlling the ribbing microstructural characteristics, such as the film thickness and the ribbing amplitude and wavelength. This approach provides a framework for designing materials that can be utilized for applications that require high strain rate damage tolerance, drag reduction, antifouling, and superhydrophobicity. 
    more » « less
  3. Abstract Bio-inspired, micro/nanotextured surfaces have a variety of applications including superhydrophobicity, self-cleaning, anti-icing, antibiofouling, and drag reduction. In this paper, a template-free and scalable roll coating process is studied for fabrication of micro/nanoscale topographies surfaces. These micro/nanoscale structures are generated with viscoelastic polymer nanocomposites and derived by controlling ribbing instabilities in forward roll coating. The relationship between process conditions and surface topography is studied in terms of shear rate, capillary number, and surface roughness parameters (e.g., Wenzel factor and the density of peaks). For a given shear rate, the sample roughness increased with a higher capillary number until a threshold point. Similarly, for a given capillary number, the roughness increased up to a threshold range associated with shear rate. A peak density coefficient (PDC) model is proposed to relate capillary number and shear rate to surface roughness. The optimum range of the shear rate and the capillary number was found to be 40–60 s−1 and 4.5 × 105–6 × 105, respectively. This resulted in a maximum Wenzel roughness factor of 1.91, a peak density of 3.94 × 104 (1/mm2), and a water contact angle (WCA) of 128 deg. 
    more » « less
  4. Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation. These distributions are often extremely complex and processing can induce high levels of anisotropy. The particle length-scale precludes high-fidelity microstructure modeling in macroscale simulations, so computational homogenization methods are often employed. These, however, involve simplifying assumptions to make the problem tractable and many rely on periodic microstructures. Here we propose a methodology to bridge the gap between realistic microstructures composed of anisotropic, spatially varying second-phase void morphologies and idealized periodic microstructures with roughly equivalent mechanical responses. We create a high-throughput, parametric study to investigate 96 unique bridging methods. We apply our proposed solution to a rolled AZ31B magnesium alloy, for which we have a rich dataset of microstructure morphology and mechanical behavior. Our methodology converts aµ-CT scan of the realistic microstructure to idealized periodic unit cell microstructures that are specific to the loading orientation. We recreate the unit cells for each parameter set in a commercial finite element software, subject them to macroscopic uniaxial loading conditions, and compare our results to the datasets for the various loading orientations. We find that certain combinations of our parameters capture the overall stress–strain response, including anisotropy effects, with some degree of success. The effect of different parameter options are explored in detail and we find that excluding certain particle populations from the analysis can give improved results. 
    more » « less
  5. Abstract Though 3D printing shows potential in fabricating complex optical components rapidly, its poor surface quality and dimensional accuracy render it unqualified for industrial optics applications. The layer steps in the building direction and the pixelated steps on each layer's contour result in inevitable microscale defects on the 3D‐printed surface, far away from the nanoscale roughness required for optics. This paper reports a customized vat photopolymerization‐based lens printing process, integrating unfocused image projection and precision spin coating to solve lateral and vertical stair‐stepping defects. A precision aspherical lens with less than 1 nm surface roughness and 1 µm profile accuracy is demonstrated. The 3D‐printed convex lens achieves a maximum MTF resolution of 347.7 lp mm−1. A mathematical model is established to predict and control the spin coating process on 3D‐printed surfaces precisely. Leveraging this low‐cost yet highly robust and repeatable 3D printing process, the precision fabrication of multi‐scale spherical, aspherical, and axicon lenses are showcased with sizes ranging from 3 to 70 mm using high clear photocuring resins. Additionally, molds are also printed to form multi‐scale PDMS‐based lenses. 
    more » « less