skip to main content


Title: Zwicky Transient Facility and Globular Clusters: Calibration of the gr-band Absolute Magnitudes for the Yellow Post-asymptotic-giant-branch Stars
Abstract

We present the first absolute calibration for the yellow post-asymptotic-giant-branch (PAGB) stars in thegandrband based on time-series observations from the Zwicky Transient Facility. These absolute magnitudes were calibrated using four yellow PAGB stars (one nonvarying star and three Type II Cepheids) located in the globular clusters. We provide two calibrations of thegr-band absolute magnitudes for the yellow PAGB stars, by using an arithmetic mean and a linear regression. We demonstrate that the linear regression provides a better fit to theg-band absolute magnitudes for the yellow PAGB stars. These calibratedgr-band absolute magnitudes have a potential to be used as Population II distance indicators in the era of time-domain synoptic sky surveys.

 
more » « less
Award ID(s):
2034437
NSF-PAR ID:
10372768
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
4
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 166
Size(s):
["Article No. 166"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stellar mass is a fundamental parameter that is key to our understanding of stellar formation and evolution, as well as the characterization of nearby exoplanet companions. Historically, stellar masses have been derived from long-term observations of visual or spectroscopic binary star systems. While advances in high-resolution imaging have enabled observations of systems with shorter orbital periods, measurements of stellar masses remain challenging, and relatively few have been precisely measured. We present a new statistical approach to measuring masses for populations of stars. Using Gaia astrometry, we analyze the relative orbital motion of >3800 wide binary systems comprising low-mass stars to establish a mass–magnitude relation in the GaiaGRPband spanning the absolute magnitude range 14.5 >MGRP> 4.0, corresponding to a mass range of 0.08MM≲ 1.0M. This relation is directly applicable to >30 million stars in the Gaia catalog. Based on comparison to existing mass–magnitude relations calibrated forKsmagnitudes from the Two Micron All Sky Survey, we estimate that the internal precision of our mass estimates is ∼10%. We use this relation to estimate masses for a volume-limited sample of ∼18,200 stars within 50 pc of the Sun and the present-day field mass function for stars withM≲ 1.0M, which we find peaks at 0.16M. We investigate a volume-limited sample of wide binary systems with early-K dwarf primaries, complete for binary mass ratiosq> 0.2, and measure the distribution ofqat separations >100 au. We find that our distribution ofqis not uniform, rather decreasing towardq= 1.0.

     
    more » « less
  2. Abstract We present the first gri -band period–luminosity (PL) and period–Wesenheit (PW) relations for 37 Type II Cepheids (TIICs) located in 18 globular clusters based on photometric data from the Zwicky Transient Facility. We also updated BVIJHK -band absolute magnitudes for 58 TIICs in 24 globular clusters using the latest homogeneous distances to the globular clusters. The slopes of g / r / i - and B / V / I -band PL relations are found to be statistically consistent when using the same sample of distance and reddening. We employed the calibration of ri -band PL/PW relations in globular clusters to estimate a distance to M31 based on a sample of ∼270 TIICs from the PAndromeda project. The distance modulus to M31, obtained using calibrated ri -band PW relation, agrees well with the recent determination based on classical Cepheids. However, distance moduli derived using the calibrated r - and i -band PL relations are systematically smaller by ∼0.2 mag, suggesting there are possible additional systematic errors on the PL relations. Finally, we also derive the period–color (PC) relations and for the first time the period–Q-index (PQ) relations, where the Q -index is reddening free, for our sample of TIICs. The PC relations based on ( r − i ) and near-infrared colors and the PQ relations are found to be relatively independent of the pulsation periods. 
    more » « less
  3. ABSTRACT

    We develop a method to calibrate u-band photometry based on the observed colour of blue Galactic halo stars. The Galactic halo stars belong to an old stellar population of the Milky Way and have relatively low metallicity. The ‘blue tip’ of the halo population – the main sequence turn-off (MSTO) stars – is known to have a relatively uniform intrinsic edge u-g colour with only slow spatial variation. In SDSS data, the observed variation is correlated with Galactic Latitude, which we attribute to contamination by higher metallicity disc stars and fit with an empirical curve. This curve can then be used to calibrate u-band imaging if g-band imaging of matching depth is available. Our approach can be applied to single-field observations at |b| > 30°, and removes the need for standard star observations or overlap with calibrated u-band imaging. We include in our method the calibration of g-band data with ATLAS-Refcat2. We test our approach on stars in KiDS DR 4, ATLAS DR 4, and DECam imaging from the NOIRLab Source Catalog (NSC DR2), and compare our calibration with SDSS. For this process, we use synthetic magnitudes to derive the colour equations between these data sets, in order to improve zero-point accuracy. We find an improvement for all data sets, reaching a zero-point precision of 0.016 mag for KiDS (compared to the original 0.033 mag), 0.020 mag for ATLAS (originally 0.027 mag), and 0.016 mag for DECam (originally 0.041 mag). Thus, this method alone reaches the goal of 0.02 mag photometric precision in u-band for the Rubin Observatory’s Legacy Survey of Space and Time (LSST).

     
    more » « less
  4. ABSTRACT

    The Southern Photometric Local Universe Survey (S-PLUS) is an ongoing survey of ∼9300 deg2 in the southern sky in a 12-band photometric system. This paper presents the second data release (DR2) of S-PLUS, consisting of 514 tiles covering an area of 950 deg2. The data has been fully calibrated using a new photometric calibration technique suitable for the new generation of wide-field multifilter surveys. This technique consists of a χ2 minimization to fit synthetic stellar templates to already calibrated data from other surveys, eliminating the need for standard stars and reducing the survey duration by ∼15 per cent. We compare the template-predicted and S-PLUS instrumental magnitudes to derive the photometric zero-points (ZPs). We show that these ZPs can be further refined by fitting the stellar templates to the 12 S-PLUS magnitudes, which better constrain the models by adding the narrow-band information. We use the STRIPE82 region to estimate ZP errors, which are ≲ 10 mmags for filters J0410, J0430, g, J0515, r, J0660, i, J0861 and z; ≲ 15 mmags for filter J0378; and ≲ 25 mmags for filters u and J0395. We describe the complete data flow of the S-PLUS/DR2 from observations to the final catalogues and present a brief characterization of the data. We show that, for a minimum signal-to-noise threshold of 5, the photometric depths of the DR2 range from 19.1 to 20.5 mag (measured in Petrosian apertures), depending on the filter. The S-PLUS DR2 can be accessed from the website: https://splus.cloud.

     
    more » « less
  5. Abstract

    SX Phoenicis (SXP) variables are short-period pulsating stars that exhibit a period–luminosity (PL) relation. We derived thegri-band PL and extinction-free period–Wesenheit (PW) relations, as well as the period-color and reddening-free period-Q-index relations for 47 SXP stars located in 21 globular clusters, using the optical light curves taken from Zwicky Transient Facility. These empirical relations were derived for the first time in thegrifilters except for theg-band PL relation. We used ourgi-band PL and PW relations to derive a distance modulus to Crater II dwarf spheroidal which hosts one SXP variable. Assuming that the fundamental and first-overtone pulsation mode for the SXP variable in Crater II, we found distance moduli of 20.03 ± 0.23 mag and 20.37 ± 0.24 mag, respectively, using the PW relation, where the latter is in excellent agreement with independent RR Lyrae based distance to Crater II dwarf galaxy.

     
    more » « less