skip to main content


Title: Light-curve Model for Luminous Red Novae and Inferences about the Ejecta of Stellar Mergers
Abstract

The process of unstable mass transfer in a stellar binary can result in either a complete merger of the stars or successful removal of the donor envelope leaving a surviving more compact binary. Luminous red novae (LRNe) are the class of optical transients believed to accompany such merger/common envelope events. Past works typically model LRNe using analytic formulae for supernova light curves that make assumptions (e.g., radiation-dominated ejecta, neglect of hydrogen recombination energy) not justified in stellar mergers due to the lower velocities and specific thermal energy of the ejecta. We present a one-dimensional model of LRN light curves that accounts for these effects. Consistent with observations, we find that LRNe typically possess two light-curve peaks, an early phase powered by initial thermal energy of the hot, fastest ejecta layers and a later peak powered by hydrogen recombination from the bulk of the ejecta. We apply our model to a sample of LRNe to infer their ejecta properties (mass, velocity, and launching radius) and compare them to the progenitor donor star properties from pretransient imaging. We define the maximum luminosity achievable for a given donor star in the limit that the entire envelope is ejected, finding that several LRNe violate this limit. Shock interaction between the ejecta and predynamical mass loss may provide an additional luminosity source to alleviate this tension. Our model can also be applied to the merger of planets with stars or stars with compact objects.

 
more » « less
Award ID(s):
2009255
NSF-PAR ID:
10372786
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
938
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 5
Size(s):
["Article No. 5"]
Sponsoring Org:
National Science Foundation
More Like this
  1. We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries enter into a common envelope phase or merger, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of Luminous Red Novae (LRNe) to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead in to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that approximately half of stellar merger and common envelope transients for solar-mass stars will be dusty, infrared-luminous sources. The dusty, infrared transients will selectively trace the population of systems that may successfully eject their common envelopes, while the unobscured, optical transients correspond to the LRNe population of stellar mergers. 
    more » « less
  2. Abstract

    Progenitor models for the “luminous” subclass of Fast Blue Optical Transients (LFBOTs; prototype: AT2018cow) are challenged to simultaneously explain all of their observed properties: fast optical rise times of days or less; peak luminosities ≳1044erg s−1; low yields ≲0.1Mof56Ni; aspherical ejecta with a wide velocity range (≲3000 km s−1to ≳0.1–0.5cwith increasing polar latitude); presence of hydrogen-depleted-but-not-free dense circumstellar material (CSM) on radial scales from ∼1014cm to ∼3 × 1016cm; embedded variable source of non-thermal X-ray/γ-rays, suggestive of a compact object. We show that all of these properties are consistent with the tidal disruption and hyper-accretion of a Wolf-Rayet (WR) star by a black hole or neutron star binary companion. In contrast with related previous models, the merger occurs with a long delay (≳100 yr) following the common envelope (CE) event responsible for birthing the binary, as a result of gradual angular momentum loss to a relic circumbinary disk. Disk-wind outflows from the merger-generated accretion flow generate the56Ni-poor aspherical ejecta with the requisite velocity range. The optical light curve is powered primarily by reprocessing X-rays from the inner accretion flow/jet, though CSM shock interaction also contributes. Primary CSM sources include WR mass loss from the earliest stages of the merger (≲1014cm) and the relic CE disk and its photoevaporation-driven wind (≳1016cm). Longer delayed mergers may instead give rise to supernovae Type Ibn/Icn (depending on the WR evolutionary state), connecting these transient classes with LFBOTs.

     
    more » « less
  3. Abstract

    A growing number of core-collapse supernovae (SNe) that show evidence for interaction with dense circumstellar medium (CSM) are accompanied by “precursor” optical emission rising weeks to months prior to the explosion. The precursor luminosities greatly exceed the Eddington limit of the progenitor star, implying that they are accompanied by substantial mass loss. Here, we present a semi-analytic model for SN precursor light curves, which we apply to constrain the properties and mechanisms of the pre-explosion mass loss. We explore two limiting mass-loss scenarios: (1) an “eruption” arising from shock breakout following impulsive energy deposition below the stellar surface; and (2) a steady “wind,” due to sustained heating of the progenitor envelope. The eruption model, which resembles a scaled-down version of Type IIP SNe, can explain the luminosities and timescales of well-sampled precursors, for ejecta masses ∼ 0.1–1Mand velocities ∼ 100–1000 km s−1. By contrast, the steady wind scenario cannot explain the highest precursor luminosities ≳ 1041erg s−1, under the constraint that the total ejecta mass does not exceed the entire progenitor mass (though the less luminous SN 2020tlf precursor can be explained by a mass-loss rate ∼ 1Myr−1). However, shock interaction between the wind and pre-existing (earlier ejected) CSM may boost its radiative efficiency and mitigate this constraint. In both the eruption and wind scenarios, the precursor ejecta forms compact (≲1015cm) optically thick CSM at the time of core collapse; though only directly observable via rapid post-explosion spectroscopy (≲ a few days before being overtaken by the SN ejecta), this material can boost the SN luminosity via shock interaction.

     
    more » « less
  4. GW190521 challenges our understanding of the late-stage evolution of massive stars and the effects of the pair-instability in particular. We discuss the possibility that stars at low or zero metallicity could retain most of their hydrogen envelope until the pre-supernova stage, avoid the pulsational pair-instability regime and produce a black hole with a mass in the mass gap by fallback. We present a series of new stellar evolution models at zero and low metallicity computed with the Geneva and MESA stellar evolution codes and compare to existing grids of models. Models with a metallicity in the range 0-0.0004 have three properties which favour higher BH masses as compared to higher metallicity models. These are (i) lower mass-loss rates during the post-MS phase, (ii) a more compact star disfavouring binary interaction and (iii) possible H-He shell interactions which lower the CO core mass. We conclude that it is possible that GW190521 may be the merger of black holes produced directly by massive stars from the first stellar generations. Our models indicate BH masses up to 70-75 Msun. Uncertainties related to convective mixing, mass loss, H-He shell interactions and pair-instability pulsations may increase this limit to ~85 Msun. 
    more » « less
  5. ABSTRACT

    We present photometric and spectroscopic observations and analysis of SN 2021bxu (ATLAS21dov), a low-luminosity, fast-evolving Type IIb supernova (SN). SN 2021bxu is unique, showing a large initial decline in brightness followed by a short plateau phase. With $M_r = -15.93 \pm 0.16\, \mathrm{mag}$ during the plateau, it is at the lower end of the luminosity distribution of stripped-envelope supernovae (SE-SNe) and shows a distinct ∼10 d plateau not caused by H- or He-recombination. SN 2021bxu shows line velocities which are at least $\sim 1500\, \mathrm{km\, s^{-1}}$ slower than typical SE-SNe. It is photometrically and spectroscopically similar to Type IIb SNe during the photospheric phases of evolution, with similarities to Ca-rich IIb SNe. We find that the bolometric light curve is best described by a composite model of shock interaction between the ejecta and an envelope of extended material, combined with a typical SN IIb powered by the radioactive decay of 56Ni. The best-fitting parameters for SN 2021bxu include a 56Ni mass of $M_{\mathrm{Ni}} = 0.029^{+0.004}_{-0.005}\, \mathrm{{\rm M}_{\odot }}$, an ejecta mass of $M_{\mathrm{ej}} = 0.61^{+0.06}_{-0.05}\, \mathrm{{\rm M}_{\odot }}$, and an ejecta kinetic energy of $K_{\mathrm{ej}} = 8.8^{+1.1}_{-1.0} \times 10^{49}\, \mathrm{erg}$. From the fits to the properties of the extended material of Ca-rich IIb SNe we find a trend of decreasing envelope radius with increasing envelope mass. SN 2021bxu has MNi on the low end compared to SE-SNe and Ca-rich SNe in the literature, demonstrating that SN 2021bxu-like events are rare explosions in extreme areas of parameter space. The progenitor of SN 2021bxu is likely a low-mass He star with an extended envelope.

     
    more » « less