skip to main content


Title: Dusty, Self-Obscured Transients from Stellar Mergers and Common Envelope Phases
We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries enter into a common envelope phase or merger, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of Luminous Red Novae (LRNe) to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead in to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that approximately half of stellar merger and common envelope transients for solar-mass stars will be dusty, infrared-luminous sources. The dusty, infrared transients will selectively trace the population of systems that may successfully eject their common envelopes, while the unobscured, optical transients correspond to the LRNe population of stellar mergers.  more » « less
Award ID(s):
1909203
NSF-PAR ID:
10358799
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries begin to coalesce, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of luminous red novae to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead up to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that 30%–50% of stellar-coalescence transients for solar-mass stars will be dusty, infrared-luminous sources. Of these, the optical transients may selectively trace complete merger outcomes while the infrared transients trace common envelope ejection outcomes.

     
    more » « less
  2. Abstract

    The process of unstable mass transfer in a stellar binary can result in either a complete merger of the stars or successful removal of the donor envelope leaving a surviving more compact binary. Luminous red novae (LRNe) are the class of optical transients believed to accompany such merger/common envelope events. Past works typically model LRNe using analytic formulae for supernova light curves that make assumptions (e.g., radiation-dominated ejecta, neglect of hydrogen recombination energy) not justified in stellar mergers due to the lower velocities and specific thermal energy of the ejecta. We present a one-dimensional model of LRN light curves that accounts for these effects. Consistent with observations, we find that LRNe typically possess two light-curve peaks, an early phase powered by initial thermal energy of the hot, fastest ejecta layers and a later peak powered by hydrogen recombination from the bulk of the ejecta. We apply our model to a sample of LRNe to infer their ejecta properties (mass, velocity, and launching radius) and compare them to the progenitor donor star properties from pretransient imaging. We define the maximum luminosity achievable for a given donor star in the limit that the entire envelope is ejected, finding that several LRNe violate this limit. Shock interaction between the ejecta and predynamical mass loss may provide an additional luminosity source to alleviate this tension. Our model can also be applied to the merger of planets with stars or stars with compact objects.

     
    more » « less
  3. Abstract

    Luminous red novae (LRNe) are transients characterized by low luminosities and expansion velocities, and they are associated with mergers or common-envelope ejections in stellar binaries. Intermediate-luminosity red transients (ILRTs) are an observationally similar class with unknown origins, but they are generally believed to be either electron-capture supernovae in super-asymptotic giant branch stars or outbursts in dusty luminous blue variables (LBVs). In this paper, we present a systematic sample of eight LRNe and eight ILRTs detected as part of the Census of the Local Universe (CLU) experiment on the Zwicky Transient Facility (ZTF). The CLU experiment spectroscopically classifies ZTF transients associated with nearby (<150 Mpc) galaxies, achieving 80% completeness formr< 20 mag. Using the ZTF-CLU sample, we derive the first systematic LRNe volumetric rate of7.83.7+6.5×105Mpc−3yr−1in the luminosity range −16 ≤Mr≤ −11 mag. We find that, in this luminosity range, the LRN rate scales asdN/dLL2.5±0.3—significantly steeper than the previously derived scaling ofL−1.4±0.3for lower-luminosity LRNe (MV≥ −10 mag). The steeper power law for LRNe at high luminosities is consistent with the massive merger rates predicted by binary population synthesis models. We find that the rates of the brightest LRNe (Mr≤ −13 mag) are consistent with a significant fraction of them being progenitors of double compact objects that merge within a Hubble time. For ILRTs, we derive a volumetric rate of2.61.4+1.8×106Mpc−3yr−1forMr≤ −13.5 mag, which scales asdN/dLL2.5±0.5. This rate is ∼1%–5% of the local core-collapse supernova rate and is consistent with theoretical ECSN rate estimates.

     
    more » « less
  4. Abstract

    If the envelope of a massive star is not entirely removed during common envelope (CE) interaction with an orbiting compact (e.g., black hole (BH) or neutron star (NS)) companion, the residual bound material eventually cools, forming a centrifugally supported disk around the binary containing the stripped He core. We present a time-dependent height-integrated model for the long-term evolution of post-CE circumbinary disks (CBDs), accounting for mass and angular momentum exchange with the binary, irradiation heating by the He core, and photoevaporation wind mass loss. A large fraction of the CBD’s mass is accreted prior to its outwards viscous spreading and wind dispersal on a timescale of ∼104–105yr, driving significant orbital migration, even for disks containing ∼10% of the original envelope mass. Insofar that the CBD lifetime is comparable to the thermal (and, potentially, nuclear) timescale of the He core, over which a second mass-transfer episode onto the companion can occur, the presence of the CBD could impact the stability of this key phase. Disruption of the core by the BH/NS would result in a jetted energetic explosion into the dense gaseous CBD (≲1015cm) and its wind (≳1016cm), consistent with the environments of luminous fast blue optical transients like AT2018cow. Evolved He cores that undergo core collapse still embedded in their CBD could generate Type Ibn/Icn supernovae. Thousands of dusty wind-shrouded massive-star CBDs may be detectable as extragalactic luminous infrared sources with the Roman Space Telescope; synchrotron radio nebulae powered by the CBD-fed BH/NS may accompany these systems.

     
    more » « less
  5. ABSTRACT

    We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.

     
    more » « less