skip to main content

Title: Ammonia in the interstellar medium of a starbursting disc at z = 2.6

We report the detection of the ground state rotational emission of ammonia, ortho-NH3 (JK = 10 → 00) in a gravitationally lensed intrinsically hyperluminous star-bursting galaxy at z = 2.6. The integrated line profile is consistent with other molecular and atomic emission lines which have resolved kinematics well modelled by a 5 kpc-diameter rotating disc. This implies that the gas responsible for NH3 emission is broadly tracing the global molecular reservoir, but likely distributed in pockets of high density (n ≳ 5 × 104 cm−3). With a luminosity of 2.8 × 106 L⊙, the NH3 emission represents 2.5 × 10−7 of the total infrared luminosity of the galaxy, comparable to the ratio observed in the Kleinmann–Low nebula in Orion and consistent with sites of massive star formation in the Milky Way. If $L_{\rm NH_3}/L_{\rm IR}$ serves as a proxy for the ‘mode’ of star formation, this hints that the nature of star formation in extreme starbursts in the early Universe is similar to that of Galactic star-forming regions, with a large fraction of the cold interstellar medium in this state, plausibly driven by a storm of violent disc instabilities in the gas-dominated disc. This supports the ‘full of Orions’ picture of star formation in the most extreme galaxies seen close to the peak epoch of stellar mass assembly.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Medium: X Size: p. L60-L64
["p. L60-L64"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We report the detection of the far-infrared (FIR) fine-structure line of singly ionized nitrogen, [N ii] 205 $\mu$m , within the peak epoch of galaxy assembly, from a strongly lensed galaxy, hereafter ‘The Red Radio Ring’; the RRR, at z = 2.55. We combine new observations of the ground-state and mid-J transitions of CO (Jup = 1, 5, 8), and the FIR spectral energy distribution (SED), to explore the multiphase interstellar medium (ISM) properties of the RRR. All line profiles suggest that the H ii regions, traced by [N ii] 205 $\mu$m , and the (diffuse and dense) molecular gas, traced by CO, are cospatial when averaged over kpc-sized regions. Using its mid-IR-to-millimetre (mm) SED, we derive a non-negligible dust attenuation of the [N ii] 205 $\mu$m line emission. Assuming a uniform dust screen approximation results a mean molecular gas column density >1024 cm−2, with a molecular gas-to-dust mass ratio of 100. It is clear that dust attenuation corrections should be accounted for when studying FIR fine-structure lines in such systems. The attenuation corrected ratio of $L_{\rm N\,{\small II}205} / L_{\rm IR(8\!-\!1000\, \mu m)} = 2.7 \times 10^{-4}$ is consistent with the dispersion of local and z > 4 SFGs. We find that the lower limit, [N ii] 205 $\mu$m -based star formation rate (SFR) is less than the IR-derived SFR by a factor of 4. Finally, the dust SED, CO line SED, and $L_{\rm N\,{\small II}205}$ line-to-IR luminosity ratio of the RRR is consistent with a starburst-powered ISM. 
    more » « less
  2. We studied the molecular gas properties of AzTEC/C159, a star-forming disk galaxy at $z=4.567$. We secured $^{12}$CO molecular line detections for the $J=2\to1$ and $J=5\to4$ transitions using the Karl G. Jansky VLA and the NOEMA interferometer. The broad (FWHM$\sim750\,{\rm km\,s}^{-1}$) and tentative double-peaked profiles of both $^{12}$CO lines are consistent with an extended molecular gas reservoir, which is distributed in a rotating disk as previously revealed from [CII] 158$\mu$m line observations. Based on the $^{12}$CO(2$\to$1) emission line we derived $L'_{\rm{CO}}=(3.4\pm0.6)\times10^{10}{\rm \,K\,km\,s}^{-1}{\rm \,pc}^{2}$, that yields a molecular gas mass of $M_{\rm H_2 }(\alpha_{\rm CO}/4.3)=(1.5\pm0.3)\times 10^{11}{\rm M}_\odot$ and unveils a gas-rich system with $\mu_{\rm gas}(\alpha_{\rm CO}/4.3)\equiv M_{\rm H_2}/M_\star=3.3\pm0.7$. The extreme star formation efficiency (SFE) of AzTEC/C159, parametrized by the ratio $L_{\rm{IR}}/L'_{\rm{CO}}=(216\pm80)\, {\rm L}_{\odot}{\rm \,(K\,km\,s}^{-1}{\rm \,pc}^{2})^{-1}$, is comparable to merger-driven starbursts such as local ultra-luminous infrared galaxies (ULIRGs) and SMGs. Likewise, the $^{12}$CO(5$\to$4)/CO(2$\to$1) line brightness temperature ratio of $r_{52}= 0.55\pm 0.15$ is consistent with high excitation conditions, similar to that observed in SMGs. We constrained the value for the $L'_{\text{CO}}-{\rm H}_2$ mass conversion factor in AzTEC/C159, i.e. $\alpha_{\text{CO}}=3.9^{+2.7}_{-1.3}{\rm \,M}_{\odot}{\rm \,K}^{-1}{\rm \,km}^{-1}{\rm \,s\,pc}^{-2}$, that is consistent with a self-gravitating molecular gas distribution as observed in local star-forming disk galaxies. Cold gas streams from cosmological filaments might be fueling a gravitationally unstable gas-rich disk in AzTEC/C159, which breaks into giant clumps forming stars as efficiently as in merger-driven systems and generate high gas excitation. 
    more » « less

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

    more » « less

    Hydrogen emission lines can provide extensive information about star-forming galaxies in both the local and high-redshift Universe. We present a detailed Lyman continuum (LyC), Lyman-α (Lyα), and Balmer line (Hα and Hβ) radiative transfer study of a high-resolution isolated Milky Way simulation using the state-of-the-art Arepo-RT radiation hydrodynamics code with the SMUGGLE galaxy formation model. The realistic framework includes stellar feedback, non-equilibrium thermochemistry accounting for molecular hydrogen, and dust grain evolution in the interstellar medium (ISM). We extend our publicly available Cosmic Lyα Transfer (COLT) code with photoionization equilibrium Monte Carlo radiative transfer and various methodology improvements for self-consistent end-to-end (non-)resonant line predictions. Accurate LyC reprocessing to recombination emission requires modelling pre-absorption by dust ($f_\text{abs} \approx 27.5\,\rm{per\,\,cent}$), helium ionization ($f_\text{He} \approx 8.7\,\rm{per\,\,cent}$), and anisotropic escape fractions ($f_\text{esc} \approx 7.9\,\rm{per\,\,cent}$), as these reduce the available budget for hydrogen line emission ($f_\text{H} \approx 55.9\,\rm{per\,\,cent}$). We investigate the role of the multiphase dusty ISM, disc geometry, gas kinematics, and star formation activity in governing the physics of emission and escape, focusing on the time variability, gas-phase structure, and spatial spectral, and viewing angle dependence of the emergent photons. Isolated disc simulations are well-suited for comprehensive observational comparisons with local Hα surveys, but would require a proper cosmological circumgalactic medium (CGM) environment as well as less dust absorption and rotational broadening to serve as analogs for high-redshift Lyα emitting galaxies. Future applications of our framework to next-generation cosmological simulations of galaxy formation including radiation-hydrodynamics that resolve ≲10 pc multiphase ISM and ≲1 kpc CGM structures will provide crucial insights and predictions for current and upcoming Lyα observations.

    more » « less
  5. ABSTRACT We present Herschel–PACS spectroscopy of four main-sequence star-forming galaxies at z ∼ 1.5. We detect [OI]63 μm line emission in BzK-21000 at z = 1.5213, and measure a line luminosity, $L_{\rm [O\, {\small I}]63\, \mu m} = (3.9\pm 0.7)\times 10^9$ L⊙. Our PDR modelling of the interstellar medium in BzK-21000 suggests a UV radiation field strength, G ∼ 320G0, and gas density, n ∼ 1800 cm−3, consistent with previous LVG modelling of the molecular CO line excitation. The other three targets in our sample are individually undetected in these data, and we perform a spectral stacking analysis which yields a detection of their average emission and an [O i]63 μm line luminosity, $L_{\rm [O\, {\small I}]63\, \mu m} = (1.1\pm 0.2)\times 10^9$ L⊙. We find that the implied luminosity ratio, $L_{\rm [O\, {\small I}]63\, \mu m}/L_{\rm IR}$, of the undetected BzK-selected star-forming galaxies broadly agrees with that of low-redshift star-forming galaxies, while BzK-21000 has a similar ratio to that of a dusty star-forming galaxy at z ∼ 6. The high [O i]63 μm line luminosities observed in BzK-21000 and the z ∼ 1−3 dusty and sub-mm luminous star-forming galaxies may be associated with extended reservoirs of low density, cool neutral gas. 
    more » « less