The Brown measure of the free multiplicative Brownian motion
Abstract

The free multiplicative Brownian motion$$b_{t}$$${b}_{t}$is the large-Nlimit of the Brownian motion on$$\mathsf {GL}(N;\mathbb {C}),$$$\mathrm{GL}\left(N;C\right),$in the sense of$$*$$$\ast$-distributions. The natural candidate for the large-Nlimit of the empirical distribution of eigenvalues is thus the Brown measure of$$b_{t}$$${b}_{t}$. In previous work, the second and third authors showed that this Brown measure is supported in the closure of a region$$\Sigma _{t}$$${\Sigma }_{t}$that appeared in the work of Biane. In the present paper, we compute the Brown measure completely. It has a continuous density$$W_{t}$$${W}_{t}$on$$\overline{\Sigma }_{t},$$${\overline{\Sigma }}_{t},$which is strictly positive and real analytic on$$\Sigma _{t}$$${\Sigma }_{t}$. This density has a simple form in polar coordinates:\begin{aligned} W_{t}(r,\theta )=\frac{1}{r^{2}}w_{t}(\theta ), \end{aligned}$\begin{array}{c}{W}_{t}\left(r,\theta \right)=\frac{1}{{r}^{2}}{w}_{t}\left(\theta \right),\end{array}$where$$w_{t}$$${w}_{t}$is an analytic function determined by the geometry of the region$$\Sigma _{t}$$${\Sigma }_{t}$. We show also that the spectral measure of free unitary Brownian motion$$u_{t}$$${u}_{t}$is a “shadow” of the Brown measure of$$b_{t}$$${b}_{t}$, precisely mirroring the relationship between the circular and semicircular laws. We develop several new methods, based on stochastic differential equations and PDE, to prove these results.

Authors:
; ;
Publication Date:
NSF-PAR ID:
10372851
Journal Name:
Probability Theory and Related Fields
Volume:
184
Issue:
1-2
Page Range or eLocation-ID:
p. 209-273
ISSN:
0178-8051
Publisher:
National Science Foundation
##### More Like this
1. Abstract

It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla$$${L}_{\beta ,\gamma }=-\text{div}{D}^{d+1+\gamma -n}\nabla$associated to a domain$$\Omega \subset {\mathbb {R}}^n$$$\Omega \subset {R}^{n}$with a uniformly rectifiable boundary$$\Gamma$$$\Gamma$of dimension$$d < n-1$$$d, the now usual distance to the boundary$$D = D_\beta$$$D={D}_{\beta }$given by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$${D}_{\beta }{\left(X\right)}^{-\beta }={\int }_{\Gamma }{|X-y|}^{-d-\beta }d\sigma \left(y\right)$for$$X \in \Omega$$$X\in \Omega$, where$$\beta >0$$$\beta >0$and$$\gamma \in (-1,1)$$$\gamma \in \left(-1,1\right)$. In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$${L}_{\beta ,\gamma }$, with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$${D}^{1-\gamma }$, in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$$|D\nabla \left(ln\left(\frac{G}{{D}^{1-\gamma }}\right)\right){|}^{2}$satisfies a Carleson measure estimate on$$\Omega$$$\Omega$. We underline that the strong and the weak results are different in nature and, of course, at the levelmore »

2. Abstract

We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$$w:N\to {R}_{+}$,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$${f}_{1},{f}_{2},\dots ,{f}_{r}$overNand requirements$$k_1,k_2,\ldots ,k_r$$${k}_{1},{k}_{2},\dots ,{k}_{r}$the goal is to find a minimum weight subset$$S \subseteq N$$$S\subseteq N$such that$$f_i(S) \ge k_i$$${f}_{i}\left(S\right)\ge {k}_{i}$for$$1 \le i \le r$$$1\le i\le r$. We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$$r=1$Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$$O\left(log\left(kr\right)\right)$approximation where$$k = \sum _i k_i$$$k={\sum }_{i}{k}_{i}$and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$$\left(1-1/e-\epsilon \right)$while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$$O\left(\frac{1}{ϵ}logr\right)$in the cost. Second, we consider the special case when each$$f_i$$${f}_{i}$is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraintsmore »

3. Abstract

The softmax policy gradient (PG) method, which performs gradient ascent under softmax policy parameterization, is arguably one of the de facto implementations of policy optimization in modern reinforcement learning. For$$\gamma$$$\gamma$-discounted infinite-horizon tabular Markov decision processes (MDPs), remarkable progress has recently been achieved towards establishing global convergence of softmax PG methods in finding a near-optimal policy. However, prior results fall short of delineating clear dependencies of convergence rates on salient parameters such as the cardinality of the state space$${\mathcal {S}}$$$S$and the effective horizon$$\frac{1}{1-\gamma }$$$\frac{1}{1-\gamma }$, both of which could be excessively large. In this paper, we deliver a pessimistic message regarding the iteration complexity of softmax PG methods, despite assuming access to exact gradient computation. Specifically, we demonstrate that the softmax PG method with stepsize$$\eta$$$\eta$can take\begin{aligned} \frac{1}{\eta } |{\mathcal {S}}|^{2^{\Omega \big (\frac{1}{1-\gamma }\big )}} ~\text {iterations} \end{aligned}$\begin{array}{c}\frac{1}{\eta }{|S|}^{{2}^{\Omega \left(\frac{1}{1-\gamma }\right)}}\phantom{\rule{0ex}{0ex}}\text{iterations}\end{array}$to converge, even in the presence of a benign policy initialization and an initial state distribution amenable to exploration (so that the distribution mismatch coefficient is not exceedingly large). This is accomplished by characterizing the algorithmic dynamics over a carefully-constructed MDP containing only three actions. Our exponential lower bound hints at the necessity of carefully adjusting update rules or enforcing proper regularization inmore »

4. Abstract

The numerical analysis of stochastic parabolic partial differential equations of the form\begin{aligned} du + A(u)\, dt = f \,dt + g \, dW, \end{aligned}$\begin{array}{c}du+A\left(u\right)\phantom{\rule{0ex}{0ex}}dt=f\phantom{\rule{0ex}{0ex}}dt+g\phantom{\rule{0ex}{0ex}}dW,\end{array}$is surveyed, whereAis a nonlinear partial operator andWa Brownian motion. This manuscript unifies much of the theory developed over the last decade into a cohesive framework which integrates techniques for the approximation of deterministic partial differential equations with methods for the approximation of stochastic ordinary differential equations. The manuscript is intended to be accessible to audiences versed in either of these disciplines, and examples are presented to illustrate the applicability of the theory.

5. Abstract

Based on the recent development of the framework of Volterra rough paths (Harang and Tindel in Stoch Process Appl 142:34–78, 2021), we consider here the probabilistic construction of the Volterra rough path associated to the fractional Brownian motion with$$H>\frac{1}{2}$$$H>\frac{1}{2}$and for the standard Brownian motion. The Volterra kernelk(ts) is allowed to be singular, and behaving similar to$$|t-s|^{-\gamma }$$${|t-s|}^{-\gamma }$for some$$\gamma \ge 0$$$\gamma \ge 0$. The construction is done in both the Stratonovich and Itô senses. It is based on a modified Garsia–Rodemich–Romsey lemma which is of interest in its own right, as well as tools from Malliavin calculus. A discussion of challenges and potential extensions is provided.