It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.
The free multiplicative Brownian motion
- Publication Date:
- NSF-PAR ID:
- 10372851
- Journal Name:
- Probability Theory and Related Fields
- Volume:
- 184
- Issue:
- 1-2
- Page Range or eLocation-ID:
- p. 209-273
- ISSN:
- 0178-8051
- Publisher:
- Springer Science + Business Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract arXiv:2010.09793 ) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$ with a uniformly rectifiable boundary$$\Omega \subset {\mathbb {R}}^n$$ of dimension$$\Gamma $$ , the now usual distance to the boundary$$d < n-1$$ given by$$D = D_\beta $$ for$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$ , where$$X \in \Omega $$ and$$\beta >0$$ . In this paper we show that the Green function$$\gamma \in (-1,1)$$ G for , with pole at infinity, is well approximated by multiples of$$L_{\beta ,\gamma }$$ , in the sense that the function$$D^{1-\gamma }$$ satisfies a Carleson measure estimate on$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$ . We underline that the strong and the weak results are different in nature and, of course, at the levelmore »$$\Omega $$ -
Abstract We consider the problem of covering multiple submodular constraints. Given a finite ground set
N , a weight function ,$$w: N \rightarrow \mathbb {R}_+$$ r monotone submodular functions over$$f_1,f_2,\ldots ,f_r$$ N and requirements the goal is to find a minimum weight subset$$k_1,k_2,\ldots ,k_r$$ such that$$S \subseteq N$$ for$$f_i(S) \ge k_i$$ . We refer to this problem as$$1 \le i \le r$$ Multi-Submod-Cover and it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260 Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$ Multi-Submod-Cover generalizes the well-known Submodular Set Cover problem (Submod-SC ), and it can also be easily reduced toSubmod-SC . A simple greedy algorithm gives an approximation where$$O(\log (kr))$$ and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm for$$k = \sum _i k_i$$ Multi-Submod-Cover that covers each constraint to within a factor of while incurring an approximation of$$(1-1/e-\varepsilon )$$ in the cost. Second, we consider the special case when each$$O(\frac{1}{\epsilon }\log r)$$ is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover ($$f_i$$ Partial-SC ), covering integer programs (CIPs ) and multiple vertex cover constraintsmore » -
Abstract The softmax policy gradient (PG) method, which performs gradient ascent under softmax policy parameterization, is arguably one of the de facto implementations of policy optimization in modern reinforcement learning. For
-discounted infinite-horizon tabular Markov decision processes (MDPs), remarkable progress has recently been achieved towards establishing global convergence of softmax PG methods in finding a near-optimal policy. However, prior results fall short of delineating clear dependencies of convergence rates on salient parameters such as the cardinality of the state space$$\gamma $$ and the effective horizon$${\mathcal {S}}$$ , both of which could be excessively large. In this paper, we deliver a pessimistic message regarding the iteration complexity of softmax PG methods, despite assuming access to exact gradient computation. Specifically, we demonstrate that the softmax PG method with stepsize$$\frac{1}{1-\gamma }$$ can take$$\eta $$ to converge, even in the presence of a benign policy initialization and an initial state distribution amenable to exploration (so that the distribution mismatch coefficient is not exceedingly large). This is accomplished by characterizing the algorithmic dynamics over a carefully-constructed MDP containing only three actions. Our exponential lower bound hints at the necessity of carefully adjusting update rules or enforcing proper regularization inmore »$$\begin{aligned} \frac{1}{\eta } |{\mathcal {S}}|^{2^{\Omega \big (\frac{1}{1-\gamma }\big )}} ~\text {iterations} \end{aligned}$$ -
Abstract The numerical analysis of stochastic parabolic partial differential equations of the form
is surveyed, where$$\begin{aligned} du + A(u)\, dt = f \,dt + g \, dW, \end{aligned}$$ A is a nonlinear partial operator andW a Brownian motion. This manuscript unifies much of the theory developed over the last decade into a cohesive framework which integrates techniques for the approximation of deterministic partial differential equations with methods for the approximation of stochastic ordinary differential equations. The manuscript is intended to be accessible to audiences versed in either of these disciplines, and examples are presented to illustrate the applicability of the theory. -
Abstract Based on the recent development of the framework of Volterra rough paths (Harang and Tindel in Stoch Process Appl 142:34–78, 2021), we consider here the probabilistic construction of the Volterra rough path associated to the fractional Brownian motion with
and for the standard Brownian motion. The Volterra kernel$$H>\frac{1}{2}$$ k (t ,s ) is allowed to be singular, and behaving similar to for some$$|t-s|^{-\gamma }$$ . The construction is done in both the Stratonovich and Itô senses. It is based on a modified Garsia–Rodemich–Romsey lemma which is of interest in its own right, as well as tools from Malliavin calculus. A discussion of challenges and potential extensions is provided.$$\gamma \ge 0$$