skip to main content


Title: Meteor Head Echo Analyses From Concurrent Radar Observations at AMISR Resolute Bay, Jicamarca, and Millstone Hill
Abstract

On 10 and 11 October 2019, high‐power radar observations were performed simultaneously for 8 hours at Resolute Bay Incoherent Scatter North (RISR‐N), Jicamarca Radio Observatory (JRO), and Millstone Hill Observatory (MHO). The concurrent observations eliminate diurnal, seasonal, and space weather biases in the meteor head echo populations and elucidate relative sensitivities of each facility and configuration. Each facility observed thousands of head echoes, with JRO observing tens of thousands. An inter‐pulse phase matching technique employs Doppler shifts to determine head echo range rates (velocity component along radar beam) with order‐of‐magnitude greater accuracy versus measuring the Doppler shift at individual pulses, and this technique yields accurate range rates and decelerations for a subset of the head echo population at each facility. Because RISR‐N is at high latitude and points away from the ecliptic plane, it does not observe head echoes with range rates faster than 55 km/s, although its head echo population demonstrates a bias toward larger and faster head echoes. At JRO near the equator, a larger spread of range rates is observed. MHO observes a large spread of range rates at mid‐latitude despite its comparable frequency to RISR‐N, but this occurs because its beam was pointed at a 45° elevation angle unlike RISR‐N and JRO which were pointed near‐zenith. A trend of greater decelerations at lower altitudes is observed at RISR‐N and JRO, with decelerations of up to 60 km/s2, but high‐deceleration events of up to 1,000 km/s2previously observed in head echo studies are not observed.

 
more » « less
Award ID(s):
1920383 2048349
NSF-PAR ID:
10372855
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. In March 2014 an all-sky imager (ASI) was installed at the Jicamarca Radio Observatory (11.95°S, 76.87°W; 0.3°S MLAT). We present results of equatorial spread F (ESF) characteristics observed at Jicamarca and at low latitudes. Optical 6300 and 7774Å airglow observations from the Jicamarca ASI are compared with other collocated instruments and with ASIs at El Leoncito, Argentina (31.8°S, 69.3°W; 19.8°S MLAT), and Villa de Leyva, Colombia (5.6°N, 73.52°W; 16.4°N MLAT). We use Jicamarca radar data, in incoherent and coherent modes, to obtain plasma parameters and detect echoes from irregularities. We find that ESF depletions tend to appear in groups with a group-to-group separation around 400–500km and within-group separation around 50–100km. We combine data from the three ASIs to investigate the conditions at Jicamarca that could lead to the development of high-altitude, or topside, plumes. We compare zonal winds, obtained from a Fabry–Pérot interferometer, with plasma drifts inferred from the zonal motion of plasma depletions. In addition to the ESF studies we also investigate the midnight temperature maximum and its effects at higher latitudes, visible as a brightness wave at El Leoncito. The ASI at Jicamarca along with collocated and low-latitude instruments provide a clear two-dimensional view of spatial and temporal evolution of ionospheric phenomena at equatorial and low latitudes that helps to explain the dynamics and evolution of equatorial ionospheric/thermospheric processes.

     
    more » « less
  2. Abstract

    Limited knowledge exists about ∼100-m-scale precipitation processes within U.S. northeast coastal snowstorms because of a lack of high-resolution observations. We investigate characteristics of microscale updraft regions within the cyclone comma head and their relationships with snowbands, wind shear, frontogenesis, and vertical mass flux using high-spatiotemporal-resolution vertically pointing Ka-band radar measurements, soundings, and reanalysis data for four snowstorms observed at Stony Brook, New York. Updraft regions are defined as contiguous time–height plotted areas with upward Doppler velocity without hydrometeor sedimentation that is equal to or greater than 0.4 m s−1. Most updraft regions in the time–height data occur on a time scale of seconds (<20 s), which is equivalent to spatial scales < 500 m. These small updraft regions within cloud echo occur more than 30% of the time for three of the four cases and 18% for the other case. They are found at all altitudes and can occur with or without frontogenesis and with or without snowbands. The updraft regions with relatively large Doppler spectrum width (>0.4 m s−1) occur more frequently within midlevels of the storms, where there are strong wind shear layers and moist shear instability layers. This suggests that the dominant forcing for the updrafts appears to be turbulence associated with the vertical shear instability. The updraft regions can be responsible for upward mass flux when they are closer together in space and time. The higher values of column mean upward mass flux often occur during snowband periods.

    Significance Statement

    Small-scale (<500 m) upward motions within four snowstorms along the U.S. northeast coast are analyzed for the first time using high-spatiotemporal-resolution millimeter-wavelength cloud radar pointed vertically. The analysis reveals that updrafts appear in the storms regardless of whether snowbands are present or whether there is larger-scale forcing for ascent. The more turbulent and stronger updrafts frequently occur in midlevels of storms associated with instability from vertical shear and contribute to upward mass flux during snowband periods when they are closer together in space and time.

     
    more » « less
  3. There are few observational techniques for measuring the distribution of kinetic energy within the mesosphere with a wide range of spatial and temporal scales. This study describes a method for estimating the three‐dimensional mesospheric wind field correlation function from specular meteor trail echoes. Each radar echo provides a measurement of a one‐dimensional projection of the wind velocity vector at a randomly sampled point in space and time. The method relies on using pairs of such measurements to estimate the correlation function of the wind with different spatial and temporal lags. The method is demonstrated using a multistatic meteor radar data set that includes ≈105meteor echoes observed during a 24‐hr time period. The new method is found to be in good agreement with the well‐established technique for estimating horizontal mean winds. High‐resolution correlation functions with temporal, horizontal, and vertical lags are also estimated from the data. The temporal correlation function is used to retrieve the kinetic energy spectrum, which includes the semidiurnal mode and a 3‐hr period wave. The horizontal and vertical correlation functions of the wind are then used to derive second‐order structure functions, which are found to be compatible with the Kolmogorov prediction for spectral distribution of kinetic energy in the turbulent inertial range. The presented method can be used to extend the capabilities of specular meteor radars. It is relatively flexible and has a multitude of applications beyond what has been shown in this study.

     
    more » « less
  4. Abstract

    High-resolution airborne cloud Doppler radars such as the W-band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-m scales. To date, cloud turbulence has been examined as variances and dissipation rates at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse-pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of nonconvective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse-pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be <0.4 m s−1for the WCR in these cases.

    Significance Statement

    Doppler spectrum width is a widely available airborne radar measurement previously considered too uncertain to attribute to atmospheric turbulence. We validate, for the first time, the response of spectrum width to turbulence at and away from research aircraft flight level and demonstrate that under certain conditions, spectrum width can be used to diagnose atmospheric turbulence down to scales of tens of meters. These high-resolution turbulent air motion intensity measurements may better connect to cloud hydrometeor process and growth response seen in coincident radar reflectivity structures proximate to turbulent eddies.

     
    more » « less
  5. Abstract

    Airborne Doppler radar provides detailed and targeted observations of winds and precipitation in weather systems over remote or difficult-to-access regions that can help to improve scientific understanding and weather forecasts. Quality control (QC) is necessary to remove nonweather echoes from raw radar data for subsequent analysis. The complex decision-making ability of the machine learning random-forest technique is employed to create a generalized QC method for airborne radar data in convective weather systems. A manually QCed dataset was used to train the model containing data from the Electra Doppler Radar (ELDORA) in mature and developing tropical cyclones, a tornadic supercell, and a bow echo. Successful classification of ∼96% and ∼93% of weather and nonweather radar gates, respectively, in withheld testing data indicate the generalizability of the method. Dual-Doppler analysis from the genesis phase of Hurricane Ophelia (2005) using data not previously seen by the model produced a comparable wind field to that from manual QC. The framework demonstrates a proof of concept that can be applied to newer airborne Doppler radars.

    Significance Statement

    Airborne Doppler radar is an invaluable tool for making detailed measurements of wind and precipitation in weather systems over remote or difficult to access regions, such as hurricanes over the ocean. Using the collected radar data depends strongly on quality control (QC) procedures to classify weather and nonweather radar echoes and to then remove the latter before subsequent analysis or assimilation into numerical weather prediction models. Prior QC techniques require interactive editing and subjective classification by trained researchers and can demand considerable time for even small amounts of data. We present a new machine learning algorithm that is trained on past QC efforts from radar experts, resulting in an accurate, fast technique with far less user input required that can greatly reduce the time required for QC. The new technique is based on the random forest, which is a machine learning model composed of decision trees, to classify weather and nonweather radar echoes. Continued efforts to build on this technique could benefit future weather forecasts by quickly and accurately quality-controlling data from other airborne radars for research or operational meteorology.

     
    more » « less