skip to main content


Title: On new two-dimensional UHF radar observations of equatorial spread F at the Jicamarca Radio Observatory
Abstract

We describe a mode for two-dimensional UHF (445 MHz) radar observations ofF-region irregularities using the 14-panel version of the advanced modular incoherent scatter radar (AMISR-14). We also present and discuss examples of observations made by this mode. AMISR-14 is installed at the Jicamarca Radio Observatory (JRO, 11.95°S, 76.87°W, ~ 0.5° dip latitude) in Peru and, therefore, allows studies of ionospheric irregularities at the magnetic equator. The new mode takes advantage of the electronic beam-steering capability of the system to scan the equatorialF-region in the east–west direction. Therefore, it produces two-dimensional views of the spatial distribution of sub-meter field-aligned density irregularities in the magnetic equatorial plane. The scans have a temporal resolution of 20 s and allow observations over a zonal distance of approximately 400 km at mainF-region heights. While the system has a lower angular and range resolution than interferometric in-beam VHF radar imaging observations available at Jicamarca, it allows a wider field-of-view than that allowed with the VHF system. Here, we describe the mode, and present and discuss examples of observations made with the system. We also discuss implications of these observations for studies of ESF at the JRO.

Graphical abstract

 
more » « less
NSF-PAR ID:
10439949
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Earth, Planets and Space
Volume:
75
Issue:
1
ISSN:
1880-5981
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Most of the low‐latitude ionospheric radar observations in South America come from the Jicamarca Radio Observatory, located in the western longitude sector (∼75°W). The deployment of the 30 MHz FAPESP‐Clemson‐INPE (FCI) coherent backscatter radar in the magnetic equatorial site of São Luis, Brazil, in 2001 allowed observations to be made in the eastern sector (∼45°W). However, despite being operational for several years (2001–2012), FCI only made observations during daytime and pre‐midnight hours, with a few exceptions. Here, we describe an upgraded system that replaced the FCI radar and present results of full‐nightF‐region observations. This radar is referred to as Measurements of Equatorial and Low‐latitude Ionospheric irregularities over São Luís, South America (MELISSA), and made observations between March 2014 and December 2018. We present results of our analyses of pre‐ and post‐midnightF‐region echoes with focus on the spectral features of post‐midnight echoes and how they compare to spectra of echoes observed in the post‐sunset sector. The radar observations indicate that post‐midnightF‐region irregularities were generated locally and were not a result of “fossil” structures generated much earlier in time (in other longitude sectors) and that drifted into the radar field‐of‐view. This also includes cases where the echoes are weak and that would be associated with decaying equatorial spreadF(ESF) structures. Collocated digisonde observations show modest but noticeableF‐region apparent uplifts prior to post‐midnight ESF events. We associate the equatorial uplifts with disturbed dynamo effects and with destabilizingF‐region conditions leading to ESF development.

     
    more » « less
  2. Abstract

    Previous radar studies have shown that magnitude of the vertical component of equatorial ionosphericE×Bplasma drifts can vary significantly with height, even within mainFregion altitudes. These studies, however, were limited to few observation days. In order to properly quantify the height variation of equatorialFregion vertical drifts, we examined 559 days of measurements made by the incoherent scatter radar of the Jicamarca Radio Observatory between the years of 1986 and 2017. From the observed profiles of vertical plasma drifts, we determined the mean behavior and variability of the height gradients as a function of local time and two distinct solar flux conditions (meanF10.7around 80 and 150 SFU). Only observations made under geomagnetically quiet conditions were considered. Our results quantify the enhanced negative height gradients of vertical drifts near sunset that have been reported in the past. More importantly, we also identify and explain an enhancement in positive gradients near sunrise. We discuss the variability of the height gradients in vertical ionosphericE×Bdrifts at main equatorialFregion heights, and the impact of this variability for satellite observations and studies of ionospheric stability and equatorial spreadF.

     
    more » « less
  3. Abstract

    We report the proposal and results of a low‐cost, easy‐to‐build GPS‐based sensor for detection and monitoring ionospheric irregularities through the detection of amplitude scintillation. The system is based on the Raspberry Pi single‐board computer combined with an Adafruit Ultimate GPS peripheral, which is capable of measuring (at 10‐Hz rate) the intensity of the L1 signals transmitted by GPS satellites. We introduce and discuss results of short‐ and long‐term observations obtained with a prototype of this system deployed in Presidente Prudente, a low magnetic latitude site in Brazil. The deployment and observations were carried out to test the ability of the system to detect ionospheric scintillations and, therefore, monitor the occurrence of ionospheric irregularities associated with equatorial spreadF. Our results show that this low‐cost sensor is indeed capable of detecting scintillation events associated with equatorial spreadF. Comparison with simultaneous, collocated measurements made by a commercial scintillation monitor are also presented. The joint observations allowed us to quantify the performance of the low‐cost monitor and to identify sources of potential limitations. While the sensor cannot (and it was not intended to) substitute commercial scintillation monitors, the low cost allows its use in studies of ionospheric irregularities (space weather) that require observations made by distributed arrays of small instruments (DASI). Furthermore, the simplicity of the sensor design stimulates its use in educational and citizen science initiatives.

     
    more » « less
  4. Abstract We introduce a new numerical model developed to assist with Data Interpretation and Numerical Analysis of ionospheric Missions and Observations (DINAMO). DINAMO derives the ionospheric electrostatic potential at low- and mid-latitudes from a two-dimensional dynamo equation and user-specified inputs for the state of the ionosphere and thermosphere (I–T) system. The potential is used to specify the electric fields and associated F -region E × B plasma drifts. Most of the model was written in Python to facilitate the setup of numerical experiments and to engage students in numerical modeling applied to space sciences. Here, we illustrate applications and results of DINAMO in two different analyses. First, DINAMO is used to assess the ability of widely used I–T climatological models (IRI-2016, NRLMSISE-00, and HWM14), when used as drivers, to produce a realistic representation of the low-latitude electrodynamics. In order to evaluate the results, model E × B drifts are compared with observed climatology of the drifts derived from long-term observations made by the Jicamarca incoherent scatter radar. We found that the climatological I–T models are able to drive many of the features of the plasma drifts including the diurnal, seasonal, altitudinal and solar cycle variability. We also identified discrepancies between modeled and observed drifts under certain conditions. This is, in particular, the case of vertical equatorial plasma drifts during low solar flux conditions, which were attributed to a poor specification of the E -region neutral wind dynamo. DINAMO is then used to quantify the impact of meridional currents on the morphology of F -region zonal plasma drifts. Analytic representations of the equatorial drifts are commonly used to interpret observations. These representations, however, commonly ignore contributions from meridional currents. Using DINAMO we show that that these currents can modify zonal plasma drifts by up to ~ 16 m/s in the bottom-side post-sunset F -region, and up to ~ 10 m/s between 0700 and 1000 LT for altitudes above 500 km. Finally, DINAMO results show the relationship between the pre-reversal enhancement (PRE) of the vertical drifts and the vertical shear in the zonal plasma drifts with implications for equatorial spread F. 
    more » « less
  5. Abstract. In March 2014 an all-sky imager (ASI) was installed at the Jicamarca Radio Observatory (11.95°S, 76.87°W; 0.3°S MLAT). We present results of equatorial spread F (ESF) characteristics observed at Jicamarca and at low latitudes. Optical 6300 and 7774Å airglow observations from the Jicamarca ASI are compared with other collocated instruments and with ASIs at El Leoncito, Argentina (31.8°S, 69.3°W; 19.8°S MLAT), and Villa de Leyva, Colombia (5.6°N, 73.52°W; 16.4°N MLAT). We use Jicamarca radar data, in incoherent and coherent modes, to obtain plasma parameters and detect echoes from irregularities. We find that ESF depletions tend to appear in groups with a group-to-group separation around 400–500km and within-group separation around 50–100km. We combine data from the three ASIs to investigate the conditions at Jicamarca that could lead to the development of high-altitude, or topside, plumes. We compare zonal winds, obtained from a Fabry–Pérot interferometer, with plasma drifts inferred from the zonal motion of plasma depletions. In addition to the ESF studies we also investigate the midnight temperature maximum and its effects at higher latitudes, visible as a brightness wave at El Leoncito. The ASI at Jicamarca along with collocated and low-latitude instruments provide a clear two-dimensional view of spatial and temporal evolution of ionospheric phenomena at equatorial and low latitudes that helps to explain the dynamics and evolution of equatorial ionospheric/thermospheric processes.

     
    more » « less