Abstract Amorphous diamond, formed by high-pressure compression of glassy carbon, is of interests for new carbon materials with unique properties such as high compressive strength. Previous studies attributed the ultrahigh strength of the compressed glassy carbon to structural transformation from graphite-likesp2-bonded structure to diamond-likesp3-bonded structure. However, there is no direct experimental determination of the bond structure of the compressed glassy carbon, because of experimental challenges. Here we succeeded to experimentally determine pair distribution functions of a glassy carbon at ultrahigh pressures up to 49.0 GPa by utilizing our recently developed double-stage large volume cell. Our results show that the C-C-C bond angle in the glassy carbon remains close to 120°, which is the ideal angle for thesp2-bonded honey-comb structure, up to 49.0 GPa. Our data clearly indicate that the glassy carbon maintains graphite-like structure up to 49.0 GPa. In contrast, graphene interlayer distance decreases sharply with increasing pressure, approaching values of the second neighbor C-C distance above 31.4 GPa. Linkages between the graphene layers may be formed with such a short distance, but not in the form of tetrahedralsp3bond. The unique structure of the compressed glassy carbon may be the key to the ultrahigh strength.
more »
« less
The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure
Abstract A metallic, covalently bonded carbon allotrope is predicted via first principles calculations. It is composed of ansp3carbon framework that acts as a diamond anvil cell by constraining the distance between parallelcis‐polyacetylene chains. The distance between thesesp2carbon atoms renders the phase metallic, and yields two well‐nested nearly parallel bands that cross the Fermi level. Calculations show this phase is a conventional superconductor, with the motions of thesp2carbons being key contributors to the electron–phonon coupling. Thesp3carbon atoms impart superior mechanical properties, with a predicted Vickers hardness of 48 GPa. This phase, metastable at ambient conditions, could be made by on‐surface polymerization of graphene nanoribbons, followed by pressurization of the resulting 2D sheets. A family of multifunctional materials with tunable superconducting and mechanical properties could be derived from this phase by varying thesp2versussp3carbon content, and by doping.
more »
« less
- Award ID(s):
- 2119065
- PAR ID:
- 10372875
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 32
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dearomative cycloadditions offer rapid access to complex 3D molecular architectures, commonly via a sp2‐to‐sp3rehybridization of two atoms of an aromatic ring. Here we report that the 6e π‐system of a benzenoid aromatic pendant could be exhaustively depleted within a single photochemical cascade. An implementation of this approach involves the initial dearomative [4+2] cycloaddition of the Excited State Intramolecular Proton Transfer (ESIPT)‐generated azaxylylene, followed by two consecutive [2+2] cycloadditions of auxiliary π moieties strategically positioned in the photoprecursor. Such photochemical cascade fully dearomatizes the benzenoid aromatic ring, saturating all six sp2atoms to yield a complex sp3‐rich scaffold with high control of its 3D molecular shape, rendering it a robust platform for rapid systematic mapping of underexplored chemical space. Significant growth of molecular complexity—starting with a modular synthesis of photoprecursors from readily available building blocks—is quantified by Böttcher score calculations.more » « less
-
Abstract We report on the largest open‐shell graphenic bilayer and also the first example of triply negatively charged radical π‐dimer. Upon three‐electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2(Ar=2,6‐dimethylphenyl) (12) was transformed to a triply negatively charged species123.−, which has been characterized by single‐crystal X‐ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID).123.−features a 96‐center‐3‐electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π‐fused rings with 96 conjugatedsp2carbon atoms. Spin frustration is observed with the frustration parameterf>31.8 at low temperatures in123.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid.more » « less
-
Abstract A sterically strained 32π‐electron antiaromatic bis‐BODIPY macrocycle in which two BODIPY fragments are linked byp‐divinylbenzene groups was prepared and characterized. Unlike regular BODIPYs, the fluorescence in this macrocycle is quenched. The broad signals in the NMR spectra of the macrocycle were explained by the vibronic freedom of thep‐divinylbenzene fragments. The possible diradicaloid nature of the macrocycle was excluded on the basis of variable‐temperature EPR spectra in solution and in solid state, which is indicative of its closed‐shell quinoidal structure. Themeso‐C−H bond in the macrocycle and its precursor BODIPY dialdehyde3forms a weak hydrogen bond with THF and is susceptible for the nucleophilic attack by organic amines and cyanide anion. The reaction products of such a nucleophilic attack havemeso‐sp3carbon atoms and were characterized by NMR, mass spectrometry and, in one case, X‐ray crystallography. Unlike the initial bis‐BODIPY macrocycle, the adducts have strong fluorescence in the 400 nm region. The electronic structure and spectroscopic properties of new chromophores were probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations and correlate well with the experimental data.more » « less
-
Abstract Calcium germanides with two mid‐late rare‐earth metals, Ca5−xGdxGe3and Ca5−xTbxGe3(x≈0.1−0.2), have been synthesized and structurally characterized. Additionally, a lanthanum‐rich germanide with calcium substitutions, La5−xCaxGe3(x≈0.5) has also been identified. The three structures have been established from single‐crystal X‐ray diffraction methods and confirmed to crystallize with the Cr5B3‐type in the tetragonal space groupI4/mcm(no. 140;Z=4; Pearson symboltI32), where part of the germanium atoms are interconnected into Ge2‐dimers, formally [Ge2]6−. Rare‐earth metal and calcium atoms are arranged in distorted trigonal prisms, square‐antiprisms and cubes, centered by Ge or rare‐earth/calcium metal atoms. These studies show that the amount of trivalent rare‐earth metal atoms substituting divalent calcium atoms is in direct correlation with the lengths of the Ge−Ge bond within the Ge2‐dimers, with distance varying between 2.58 Å in Ca5−xGdxGe3and 2.75 Å in La5−xCaxGe3. Such an elongation of the Ge−Ge bond is consistent with the notion that the parent Ca5Ge3Zintl phase (e. g. (Ca2+)5[Ge2]6−[Ge4−]) is being driven out of the ideal valence electron count and further reduced. In this context, this work demonstrates the ability of the germanides with the Cr5B3structure type to accommodate substitutions and wider valence electron count while maintaining their global structural integrity.more » « less
An official website of the United States government
