skip to main content


Title: Interglacial Paleoclimate in the Arctic
Abstract

Marine Isotope Stage 11 from ~424 to 374 ka experienced peak interglacial warmth and highest global sea level ~410–400 ka. MIS 11 has received extensive study on the causes of its long duration and warmer than Holocene climate, which is anomalous in the last half million years. However, a major geographic gap in MIS 11 proxy records exists in the Arctic Ocean where fragmentary evidence exists for a seasonally sea ice‐free summers and high sea‐surface temperatures (SST; ~8–10 °C near the Mendeleev Ridge). We investigated MIS 11 in the western and central Arctic Ocean using 12 piston cores and several shorter cores using proxies for surface productivity (microfossil density), bottom water temperature (magnesium/calcium ratios), the proportion of Arctic Ocean Deep Water versus Arctic Intermediate Water (key ostracode species), sea ice (epipelagic sea ice dwelling ostracode abundance), and SST (planktic foraminifers). We produced a new benthic foraminiferal δ18O curve, which signifies changes in global ice volume, Arctic Ocean bottom temperature, and perhaps local oceanographic changes. Results indicate that peak warmth occurred in the Amerasian Basin during the middle of MIS 11 roughly from 410 to 400 ka. SST were as high as 8–10 °C for peak interglacial warmth, and sea ice was absent in summers. Evidence also exists for abrupt suborbital events punctuating the MIS 12‐MIS 11‐MIS 10 interval. These fluctuations in productivity, bottom water temperature, and deep and intermediate water masses (Arctic Ocean Deep Water and Arctic Intermediate Water) may represent Heinrich‐like events possibly involving extensive ice shelves extending off Laurentide and Fennoscandian Ice Sheets bordering the Arctic.

 
more » « less
NSF-PAR ID:
10373052
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
34
Issue:
12
ISSN:
2572-4517
Page Range / eLocation ID:
p. 1959-1979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Changes in the circulation of the Southern Ocean are known to have impacted global nutrient, heat, and carbon cycles during the glacial and interglacial periods of the late Pleistocene. Proxy‐based records of these changes deserve continued scrutiny as the implications may be important for constraining future change. A record of authigenic uranium from the South Atlantic has been used to infer changes in deep‐sea oxygenation and organic matter export over the past 0.5 million years. Since sedimentary uranium has the possible complication of remobilization, it is prudent to investigate the behavior of other redox‐sensitive trace metals to confidently interpret temporal changes in oxygenation. Focusing here on the exceptionally long interglacial warm period, Marine Isotope Stage (MIS) 11, we found concurrent authigenic enrichments of uranium (U) and rhenium (Re) throughout MIS 12 to 10, overall supporting prior interpretations of low‐oxygen periods. However, there are differential responses of Re and U to oxygen changes and some evidence of small‐scale Re remobilization, which may involve differences in molecular‐level reduction mechanisms. Peaks in authigenic manganese (Mn) intervening with peaks in Re and U indicate increases in porewater oxygenation which likely relate to increased Antarctic Bottom Water circulation at the onset of MIS11c and during the peak warmth of the interglacial around 400 ka.

     
    more » « less
  2. Abstract

    Early Pleistocene Marine Isotope Stage (MIS)‐31 (1.081–1.062 Ma) is a unique interval of extreme global warming, including evidence of a West Antarctic Ice Sheet (WAIS) collapse. Here we present a new 1,000‐year resolution, spanning 1.110–1.030 Ma, diatom‐based reconstruction of primary productivity, relative sea surface temperature changes, sea‐ice proximity/open ocean conditions and diatom species absolute abundances during MIS‐31, from the Scotia Sea (59°S) using deep‐sea sediments collected during International Ocean Discovery Program (IODP) Expedition 382. The lower Jaramillo magnetic reversal (base of C1r.1n, 1.071 Ma) provides a robust and independent time‐stratigraphic marker to correlate records from other drill cores in the Antarctic Zone of the Southern Ocean (AZSO). An increase in open ocean speciesFragilariopsis kerguelensisin early MIS‐31 at 53°S (Ocean Drilling Program Site 1,094) correlates with increased obliquity forcing, whereas at 59°S (IODP Site U1537; this study) three progressively increasing, successive peaks in the relative abundance ofF. kerguelensiscorrelate with Southern Hemisphere‐phased precession pacing. These observations reveal a complex pattern of ocean temperature change and sustained sea surface temperature increase lasting longer than a precession cycle within the Atlantic sector of the AZSO. Timing of an inferred WAIS collapse is consistent with delayed warmth (possibly driven by sea‐ice dynamics) in the southern AZSO, supporting models that indicate WAIS sensitivity to local sub‐ice shelf melting. Anthropogenically enhanced impingement of relatively warm water beneath the ice shelves today highlights the importance of understanding dynamic responses of the WAIS during MIS‐31, a warmer than Holocene interglacial.

     
    more » « less
  3. We address here the specific timing and amplitude of sea‐surface conditions and productivity changes off SW Greenland, northern Labrador Sea, in response to the high deglacial meltwater rates, the Early Holocene maximum insolation and Neoglacial cooling. Dinocyst assemblages from sediment cores collected off Nuuk were used to set up quantitative records of sea ice cover, seasonal sea‐surface temperature (SST), salinity (SSS), and primary productivity, with a centennial to millennial scale resolution. Until ~10 ka BP, ice‐proximal conditions are suggested by the quasi‐exclusive dominance of heterotrophic taxa and low dinocyst concentrations. At about 10 ka BP, an increase in species diversity and abundance of phototrophic taxa marks the onset of interglacial conditions at a regional scale, with summer SST reaching up to 10 °C between 8 and 5 ka BP, thus in phase with the Holocene Thermal Maximum as recorded in the southern Greenlandic areas/northern Labrador Sea. During this interval, low SSS but high productivity prevailed in response to high meltwater discharge and nutrient inputs from the Greenland Ice Sheet. After ~5 ka BP, a decrease in phototrophic taxa marks a two‐step cooling of surface waters. The first started at ~5 ka BP, and the second at ~3 ka BP, with a shift toward colder conditions and higher SSS suggesting reduced meltwater discharge during the Neoglacial. This second step coincides with the disappearance of the Saqqaq culture. The gap in human occupation in west Greenland, between the Dorset and the Norse settlements from 2000 to 1000 years BP, might be linked to high amplitude and high frequency variability of ocean and climate conditions.

     
    more » « less
  4. Grain size is an important textural property of sediments and is widely used in paleoenvironmental studies as a means to infer changes in the sedimentary environment. However, grain size parameters are not always easy to interpret without a full understanding of the factors that influence grain size. Here, we measure grain size in sediment cores from the Bering slope and the Umnak Plateau, and review the effectiveness of different grain size parameters as proxies for sediment transport, current strength, and primary productivity, during a past warm interval (Marine Isotope Stage 11, 424-374 ka). In general, sediments in the Bering Sea are hemipelagic, making them ideal deposits for paleoenvironmental reconstructions, but there is strong evidence in the grain size distribution for contourite deposits between ~408-400 ka at the slope sites, suggesting a change in bottom current transport at this time.We show that the grain size of coarse (>150 μm) terrigenous sediment can be used effectively as a proxy for ice rafting, although it is not possible to distinguish between iceberg and sea ice rafting processes, based on grain size alone.We find that the mean grain size of bulk sediments can be used to infer changes in productivity on glacial-interglacial timescales, but the size and preservation of diatom valves also exert a control on mean grain size. Lastly, we show that the mean size of sortable silt (10-63 μm) is not a valid proxy for bottom current strength in the Bering Sea, because the input of ice-rafted silt confounds the sortable silt signal. 
    more » « less
  5. Abstract. The oxygen isotopic composition of benthic foraminiferal tests (δ18Ob) is one of the pre-eminent tools for correlating marine sediments and interpreting past terrestrial ice volume and deep-ocean temperatures. Despite the prevalence of δ18Ob applications to marine sediment cores over the Quaternary, its use is limited in the Arctic Ocean because of low benthic foraminiferal abundances, challenges with constructing independent sediment core age models, and an apparent muted amplitude of Arctic δ18Ob variability compared to open-ocean records. Here we evaluate the controls on Arctic δ18Ob by using ostracode Mg/Ca paleothermometry to generate a composite record of the δ18O of seawater (δ18Osw) from 12 sediment cores in the intermediate to deep Arctic Ocean (700–2700 m) that covers the last 600 kyr based on biostratigraphy and orbitally tuned age models. Results show that Arctic δ18Ob was generally higher than open-ocean δ18Ob during interglacials but was generally equivalent to global reference records during glacial periods. The reduced glacial–interglacial Arctic δ18Ob range resulted in part from the opposing effect of temperature, with intermediate to deep Arctic warming during glacials counteracting the whole-ocean δ18Osw increase from expanded terrestrial ice sheets. After removing the temperature effect from δ18Ob, we find that the intermediate to deep Arctic experienced large (≥1 ‰) variations in local δ18Osw, with generally higher local δ18Osw during interglacials and lower δ18Osw during glacials. Both the magnitude and timing of low local δ18Osw intervals are inconsistent with the recent proposal of freshwater intervals in the Arctic Ocean during past glaciations. Instead, we suggest that lower local δ18Osw in the intermediate to deep Arctic Ocean during glaciations reflected weaker upper-ocean stratification and more efficient transport of low-δ18Osw Arctic surface waters to depth by mixing and/or brine rejection. 
    more » « less