skip to main content


Title: Selective control of conductance modes in multi-terminal Josephson junctions
Abstract

The Andreev bound state spectra of multi-terminal Josephson junctions form an artificial band structure, which is predicted to host tunable topological phases under certain conditions. However, the number of conductance modes between the terminals of a multi-terminal Josephson junction must be few in order for this spectrum to be experimentally accessible. In this work, we employ a quantum point contact geometry in three-terminal Josephson devices to demonstrate independent control of conductance modes between each pair of terminals and access to the single-mode regime coexistent with the presence of superconducting coupling. These results establish a full platform on which to realize tunable Andreev bound state spectra in multi-terminal Josephson junctions.

 
more » « less
NSF-PAR ID:
10373070
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In a Josephson junction (JJ) at zero bias, Cooper pairs are transported between two superconducting contacts via the Andreev bound states (ABSs) formed in the Josephson channel. Extending JJs to multiple superconducting contacts, the ABSs in the Josephson channel can coherently hybridize Cooper pairs among different superconducting electrodes. Biasing three-terminal JJs with antisymmetric voltages, for example, results in a direct current (DC) of Cooper quartet (CQ), which involves a four-fermion entanglement. Here, we report half a flux periodicity in the interference of CQ formed in graphene based multi-terminal (MT) JJs with a magnetic flux loop. We observe that the quartet differential conductance associated with supercurrent exhibits magneto-oscillations associated with a charge of 4e, thereby presenting evidence for interference between different CQ processes. The CQ critical current shows non-monotonic bias dependent behavior, which can be modeled by transitions between Floquet-ABSs. Our experimental observation for voltage-tunable non-equilibrium CQ-ABS in flux-loop-JJs significantly extends our understanding of MT-JJs, enabling future design of topologically unique ABS spectrum.

     
    more » « less
  2. We discuss the feasibility of measurement-based braiding in semiconductor-superconductor (SM-SC) heterostructures in the so-called quasi-Majorana regime—the topologically-trivial regime characterized by robust zero-bias conductance peaks (ZBCPs) that are due to partially-separated Andreev bound states (ps-ABSs). These low energy ABSs consist of component Majorana bound states (also called quasi-Majorana modes) that are spatially separated by a length scale smaller than the length of the system, in contrast with the Majorana zero modes (MZMs) emerging in the topological regime, which are separated by the length of the wire. In the quasi-Majorana regime, the ZBCPs appear to be robust to various perturbations as long as the energy splitting of the ps-ABS is less than the typical width Ew of the low-energy conductance peaks (Ew ∼ 10–20 μeV). However, the feasibility of measurement-based braiding depends on a different, much smaller, energy scale Em ∼ 0.1 μeV. This energy scale is given by the typical fermion parity-dependent ground state energy shift due to virtual electron transfer between the SM-SC system and a quantum dot used for parity measurements. In this paper we show that it is possible to prepare the SM-SC system in the quasi-Majorana regime with energy splittings below the Em threshold, so that measurement-based braiding is possible in principle. However, despite the apparent robustness of the corresponding ZBCPs, ps-ABSs are in reality topologically unprotected. Starting with ps-ABSs with energy below Em, we identify the maximum amplitudes of different types of (local) perturbations that are consistent with perturbation-induced energy splittings not exceeding the Em limit.We argue that measurements generating perturbations larger than the threshold amplitudes appropriate for Em cannot realize measurement-based braiding in SM-SC heterostructures in the quasi-Majorana regime. We find that, if possible at all, quantum computation using measurement-based braiding in the quasi-Majorana regime would be plagued with errors introduced by the measurement processes themselves, while such errors are significantly less likely in a scheme involving topological MZMs. 
    more » « less
  3. Nonreciprocal superconducting devices have attracted growing interest in recent years as they potentially enable directional charge transport for applications in superconducting quantum circuits. Specifically, the superconducting diode effect has been explored in two-terminal devices that exhibit superconducting transport in one current direction while showing dissipative transport in the opposite direction. Here, we exploit multiterminal Josephson junctions (MTJJs) to engineer magnetic-field-free nonreciprocity in multiport networks. We show that when treated as a two-port electrical network, a three terminal Josephson junction (JJ) with an asymmetric graphene region exhibits reconfigurable two-port nonreciprocity. We observe nonreciprocal (reciprocal) transport between superconducting terminals with broken (preserved) spatial mirror symmetry. We explain our observations by considering a circuit network of JJs with different critical currents. 
    more » « less
  4. Abstract

    The phenomenon of non-reciprocal critical current in a Josephson device, termed the Josephson diode effect, has garnered much recent interest. Realization of the diode effect requires inversion symmetry breaking, typically obtained by spin-orbit interactions. Here we report observation of the Josephson diode effect in a three-terminal Josephson device based upon an InAs quantum well two-dimensional electron gas proximitized by an epitaxial aluminum superconducting layer. We demonstrate that the diode efficiency in our devices can be tuned by a small out-of-plane magnetic field or by electrostatic gating. We show that the Josephson diode effect in these devices is a consequence of the artificial realization of a current-phase relation that contains higher harmonics. We also show nonlinear DC intermodulation and simultaneous two-signal rectification, enabled by the multi-terminal nature of the devices. Furthermore, we show that the diode effect is an inherent property of multi-terminal Josephson devices, establishing an immediately scalable approach by which potential applications of the Josephson diode effect can be realized, agnostic to the underlying material platform. These Josephson devices may also serve as gate-tunable building blocks in designing topologically protected qubits.

     
    more » « less
  5. Key points

    Gap junctions formed by different connexins are expressed throughout the body and harbour unique channel properties that have not been fully defined mechanistically.

    Recent structural studies by cryo‐electron microscopy have produced high‐resolution models of the related but functionally distinct lens connexins (Cx50 and Cx46) captured in a stable open state, opening the door for structure–function comparison.

    Here, we conducted comparative molecular dynamics simulation and electrophysiology studies to dissect the isoform‐specific differences in Cx46 and Cx50 intercellular channel function.

    We show that key determinants Cx46 and Cx50 gap junction channel open stability and unitary conductance are shaped by structural and dynamic features of their N‐terminal domains, in particular the residue at the 9th position and differences in hydrophobic anchoring sites.

    The results of this study establish the open state Cx46/50 structural models as archetypes for structure–function studies targeted at elucidating the mechanism of gap junction channels and the molecular basis of disease‐causing variants.

    Abstract

    Connexins form intercellular communication channels, known as gap junctions (GJs), that facilitate diverse physiological roles, from long‐range electrical and chemical coupling to coordinating development and nutrient exchange. GJs formed by different connexin isoforms harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies on Cx46 and Cx50 defined a novel and stable open state and implicated the amino‐terminal (NT) domain as a major contributor for isoform‐specific functional differences between these closely related lens connexins. To better understand these differences, we constructed models corresponding to wildtype Cx50 and Cx46 GJs, NT domain swapped chimeras, and point variants at the 9th residue for comparative molecular dynamics (MD) simulation and electrophysiology studies. All constructs formed functional GJ channels, except the chimeric Cx46‐50NT variant, which correlated with an introduced steric clash and increased dynamical behaviour (instability) of the NT domain observed by MD simulation. Single channel conductance correlated well with free‐energy landscapes predicted by MD, but resulted in a surprisingly greater degree of effect. Additionally, we observed significant effects on transjunctional voltage‐dependent gating (Vjgating) and/or open state dwell times induced by the designed NT domain variants. Together, these studies indicate intra‐ and inter‐subunit interactions involving both hydrophobic and charged residues within the NT domains of Cx46 and Cx50 play important roles in defining GJ open state stability and single channel conductance, and establish the open state Cx46/50 structural models as archetypes for structure–function studies targeted at elucidating GJ channel mechanisms and the molecular basis of cataract‐linked connexin variants.

     
    more » « less