We consider theoretically the physics of bulk topological superconductivity accompanied by boundary non- Abelian Majorana zero modes in semiconductor-superconductor (SM-SC) hybrid systems consisting of finite wires in the presence of correlated disorder arising from random charged impurities. We find the system to manifest a highly complex behavior due to the subtle interplay between finite wire length and finite disorder, leading to copious low-energy in-gap states throughout the wire and considerably complicating the interpretation of tunneling spectroscopic transport measurements used extensively to search forMajorana modes. The presence of disorder-induced low-energy states may lead to the nonexistence of end Majorana zero modes even when tunneling spectroscopy manifests zero-bias conductance peaks in local tunneling and signatures of bulk gap closing/reopening in the nonlocal transport. In short wires within the intermediate disorder regime, apparent topology may manifest in small ranges (“patches”) of parameter values, which may or may not survive the longwire limit depending on various details. Because of the dominance of disorder-induced in-gap states, the system may even occasionally have an appropriate topological invariant without manifesting isolated end Majorana zero modes. We discuss our findings in the context of a recent breakthrough experiment from Microsoft reporting the simultaneous observations of zero-bias conductance peaks in local tunneling and gap opening in nonlocal transport within small patches of parameter space. Based on our analysis, we believe that the disorder strength to SC-gap ratio must decrease further for the definitive realization of non-Abelian Majorana zero modes in SM-SC devices.
more »
« less
Feasibility of measurement-based braiding in the quasi-Majorana regime of semiconductor-superconductor heterostructures
We discuss the feasibility of measurement-based braiding in semiconductor-superconductor (SM-SC) heterostructures in the so-called quasi-Majorana regime—the topologically-trivial regime characterized by robust zero-bias conductance peaks (ZBCPs) that are due to partially-separated Andreev bound states (ps-ABSs). These low energy ABSs consist of component Majorana bound states (also called quasi-Majorana modes) that are spatially separated by a length scale smaller than the length of the system, in contrast with the Majorana zero modes (MZMs) emerging in the topological regime, which are separated by the length of the wire. In the quasi-Majorana regime, the ZBCPs appear to be robust to various perturbations as long as the energy splitting of the ps-ABS is less than the typical width Ew of the low-energy conductance peaks (Ew ∼ 10–20 μeV). However, the feasibility of measurement-based braiding depends on a different, much smaller, energy scale Em ∼ 0.1 μeV. This energy scale is given by the typical fermion parity-dependent ground state energy shift due to virtual electron transfer between the SM-SC system and a quantum dot used for parity measurements. In this paper we show that it is possible to prepare the SM-SC system in the quasi-Majorana regime with energy splittings below the Em threshold, so that measurement-based braiding is possible in principle. However, despite the apparent robustness of the corresponding ZBCPs, ps-ABSs are in reality topologically unprotected. Starting with ps-ABSs with energy below Em, we identify the maximum amplitudes of different types of (local) perturbations that are consistent with perturbation-induced energy splittings not exceeding the Em limit.We argue that measurements generating perturbations larger than the threshold amplitudes appropriate for Em cannot realize measurement-based braiding in SM-SC heterostructures in the quasi-Majorana regime. We find that, if possible at all, quantum computation using measurement-based braiding in the quasi-Majorana regime would be plagued with errors introduced by the measurement processes themselves, while such errors are significantly less likely in a scheme involving topological MZMs.
more »
« less
- Award ID(s):
- 2014156
- PAR ID:
- 10476246
- Publisher / Repository:
- Amesican Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 102
- Issue:
- 20
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)One of the most exciting areas of research in quantum condensed matter physics is the push to create topologically protected qubits using non-Abelian anyons. The focus of these efforts has been Majorana zero modes (MZMs), which are predicted to emerge as localized zero-energy states at the ends of 1D topological superconductors. A key role in the search for experimental signatures of these quasiparticles has been played by the scanning tunnelling microscope (STM). The power of high-resolution STM techniques is perhaps best illustrated by their application in identifying MZMs in 1D chains of magnetic atoms on the surface of a superconductor. In this platform, STM spectroscopic mapping has demonstrated the localized nature of MZM zero-energy excitations at the ends of such chains, and experiments with superconducting and magnetic STM tips have been used to uniquely distinguish them from trivial edge modes. Beyond the atomic chains, STM has also uncovered signatures of MZMs in 2D materials and topological surface and boundary states, when they are subjected to the superconducting proximity effect. Looking ahead, future STM experiments may be able to demonstrate the non-Abelian statistics of MZMs.more » « less
-
A<sc>bstract</sc> When the available collision energy is much above the mass of the particles involved, scattering amplitudes feature kinematic configurations that are enhanced by the much lower virtuality of some intermediate particle. Such configurations generally factorise in terms of a hard scattering amplitude with exactly on-shell intermediate particle, times universal factors. In the case of real radiation emission, such factors are splitting amplitudes that describe the creation or the annihilation — for initial or final state splittings — of the low-virtuality particle and the creation of the real radiation particles. We compute at tree-level the amplitudes describing all the splittings that take place in the Standard Model when the collision energy is much above the electroweak scale. Unlike previous results, our splitting amplitudes fully describe the low-virtuality kinematic regime, which includes the region of collinear splitting, of soft emission, and combinations thereof. The splitting amplitudes are compactly represented as little-group tensors in an improved bi-spinor formalism for massive spin-1 particles that automatically incorporates the Goldstone Boson Equivalence Theorem. Simple explicit expressions are obtained using a suitably defined infinite-momentum helicity basis representation of the spinor variables. Our results, combined with the known virtual contributions, could enable systematic predictions of the leading electroweak radiation effects in high-energy scattering processes, with particularly promising phenomenological applications to the physics of future colliders with very high energy such as a muon collider.more » « less
-
Drouhin, Henri-Jean M.; Wegrowe, Jean-Eric; Razeghi, Manijeh (Ed.)Majorana zero modes (MZMs) are expected to emerge in material heterostructures combining superconductivity, ferromagnetism, and spin-orbit coupling (SOC). Particularly, inducing superconductivity and magnetic exchange interactions in well-defined Shockley surface states (SS) of high quality ultrathin Au(111) layers, which intrinsically have strong SOC, has been predicted as an excellent platform for MBS. In this talk, our success in creating such heterostructure in epitaxially grown Au(111) heterostructures will be presented. Signatures of superconductivity induced in the two-dimensional SS of Au(111) thin film are observed by means of electron tunneling spectroscopy. The behavior of such superconducting state under a planar Zeeman field will be shown. Evidence of a pair of MZMs in a fabricated Au(111) nanowire system will be demonstrated.more » « less
-
BACKGROUND The past decade has witnessed considerable progress toward the creation of new quantum technologies. Substantial advances in present leading qubit technologies, which are based on superconductors, semiconductors, trapped ions, or neutral atoms, will undoubtedly be made in the years ahead. Beyond these present technologies, there exist blueprints for topological qubits, which leverage fundamentally different physics for improved qubit performance. These qubits exploit the fact that quasiparticles of topological quantum states allow quantum information to be encoded and processed in a nonlocal manner, providing inherent protection against decoherence and potentially overcoming a major challenge of the present generation of qubits. Although still far from being experimentally realized, the potential benefits of this approach are evident. The inherent protection against decoherence implies better scalability, promising a considerable reduction in the number of qubits needed for error correction. Transcending possible technological applications, the underlying physics is rife with exciting concepts and challenges, including topological superconductors, non-abelian anyons such as Majorana zero modes (MZMs), and non-abelian quantum statistics. ADVANCES In a wide-ranging and ongoing effort, numerous potential material platforms are being explored that may realize the required topological quantum states. Non-abelian anyons were first predicted as quasiparticles of topological states known as fractional quantum Hall states, which are formed when electrons move in a plane subject to a strong perpendicular magnetic field. The prediction that hybrid materials that combine topological insulators and conventional superconductors can support localized MZMs, the simplest type of non-abelian anyon, brought entirely new material platforms into view. These include, among others, semiconductor-superconductor hybrids, magnetic adatoms on superconducting substrates, and Fe-based superconductors. One-dimensional systems are playing a particularly prominent role, with blueprints for quantum information applications being most developed for hybrid semiconductor-superconductor systems. There have been numerous attempts to observe non-abelian anyons in the laboratory. Several experimental efforts observed signatures that are consistent with some of the theoretical predictions for MZMs. A few extensively studied platforms were subjected to intense scrutiny and in-depth analyses of alternative interpretations, revealing a more complex reality than anticipated, with multiple possible interpretations of the data. Because advances in our understanding of a physical system often rely on discrepancies between experiment and theory, this has already led to an improved understanding of Majorana signatures; however, our ability to detect and manipulate non-abelian anyons such as MZMs remains in its infancy. Future work can build on improved materials in some of the existing platforms but may also exploit new materials such as van der Waals heterostructures, including twisted layers, which promise many new options for engineering topological phases of matter. OUTLOOK Experimentally establishing the existence of non-abelian anyons constitutes an outstandingly worthwhile goal, not only from the point of view of fundamental physics but also because of their potential applications. Future progress will be accelerated if claims of Majorana discoveries are based on experimental tests that go substantially beyond indicators such as zero-bias peaks that, at best, suggest consistency with a Majorana interpretation. It will be equally important that these discoveries build on an excellent understanding of the underlying material systems. Most likely, further material improvements of existing platforms and the exploration of new material platforms will both be important avenues for progress toward obtaining solid evidence for MZMs. Once that has been achieved, we can hope to explore—and harness—the fascinating physics of non-abelian anyons such as the topologically protected ground state manifold and non-abelian statistics. Proposed topological platforms. (Left) Proposed state of electrons in a high magnetic field (even-denominator fractional quantum Hall states) are predicted to host Majorana quasiparticles. (Right) Hybrid structures of superconductors and other materials have also been proposed to host such quasiparticles and can be tailored to create topological quantum bits based on Majoranas.more » « less
An official website of the United States government

