Substitutionally doped transition metal dichalcogenides (TMDs) are essential for advancing TMD‐based field effect transistors, sensors, and quantum photonic devices. However, the impact of local dopant concentrations and dopant–dopant interactions on charge doping and defect formation within TMDs remains underexplored. Here, a breakthrough understanding of the influence of rhenium (Re) concentration is presented on charge doping and defect formation in MoS2monolayers grown by metal–organic chemical vapor deposition (MOCVD). It is shown that Re‐MoS2films exhibit reduced sulfur‐site defects, consistent with prior reports. However, as the Re concentration approaches ⪆2 atom%, significant clustering of Re in the MoS2is observed. Ab Initio calculations indicate that the transition from isolated Re atoms to Re clusters increases the ionization energy of Re dopants, thereby reducing Re‐doping efficacy. Using photoluminescence (PL) spectroscopy, it is shown that Re dopant clustering creates defect states that trap photogenerated excitons within the MoS2lattice, resulting in broad sub‐gap emission. These results provide critical insights into how the local concentration of metal dopants influences carrier density, defect formation, and exciton recombination in TMDs, offering a novel framework for designing future TMD‐based devices with improved electronic and photonic properties.
more »
« less
Enhanced Emission from Defect Levels in Multilayer MoS 2
Abstract Realizing stimulated emission from defects in 2D‐layered semiconductors has the potential to enhance the sensitivity of characterizing their defects. However, stimulated emission from defects in layered materials presents a different set of challenges in carrier lifetime and energy level design and is not achieved so far. Here, photoluminescence (PL) spectroscopy, Raman spectroscopy, and first‐principles theory are combined to reveal an anomalous PL intensity–temperature relation and strong polarization effects at a defect emission peak in annealed multilayer MoS2, suggesting defect‐based stimulated emission. The emergence of stimulated emission behavior is also controllable (by temperature) and reversible. The observed stimulated emission behavior is supported by a three‐level system involving two defect levels from chalcogen vacancies and a pump level from the conduction band edge. First‐principles calculations show that the special indirect gap that enables stimulated emission is not native to pristine bulk MoS2and only emerges under thermal strain.
more »
« less
- Award ID(s):
- 2128367
- PAR ID:
- 10373093
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 10
- Issue:
- 19
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Low‐Temperature Synthesis of Stable CaZn 2 P 2 Zintl Phosphide Thin Films as Candidate Top AbsorbersAbstract The development of tandem photovoltaics and photoelectrochemical solar cells requires new absorber materials with bandgaps in the range of ≈1.5–2.3 eV, for use in the top cell paired with a narrower‐gap bottom cell. An outstanding challenge is finding materials with suitable optoelectronic and defect properties, good operational stability, and synthesis conditions that preserve underlying device layers. This study demonstrates the Zintl phosphide compound CaZn2P2as a compelling candidate semiconductor for these applications. Phase‐pure, ≈500 nm‐thick CaZn2P2thin films are prepared using a scalable reactive sputter deposition process at growth temperatures as low as 100 °C, which is desirable for device integration. Ultraviolet‐visible spectroscopy shows that CaZn2P2films exhibit an optical absorptivity of ≈104 cm−1at ≈1.95 eV direct bandgap. Room‐temperature photoluminescence (PL) measurements show near‐band‐edge optical emission, and time‐resolved microwave conductivity (TRMC) measurements indicate a photoexcited carrier lifetime of ≈30 ns. CaZn2P2is highly stable in both ambient conditions and moisture, as evidenced by PL and TRMC measurements. Experimental data are supported by first‐principles calculations, which indicate the absence of low‐formation‐energy, deep intrinsic defects. Overall, this study shall motivate future work integrating this potential top cell absorber material into tandem solar cells.more » « less
-
In this contribution, we use heavy ion irradiation and photoluminescence (PL) spectroscopy to demonstrate that defects can be used to tailor the optical properties of two-dimensional molybdenum disulfide (MoS 2 ). Sonicated MoS 2 flakes were deposited onto Si/SiO 2 substrate and subjected to 3 MeV Au 2+ ion irradiation at room temperature to fluences ranging from 1 × 10 12 to 1 × 10 16 cm −2 . We demonstrate that irradiation-induced defects can control optical excitations in the inner core shell of MoS 2 by binding A 1s - and B 1s -excitons, and correlate the exciton peaks to the specific defects introduced with irradiation. The systematic increase of ion fluence produced different defect densities in MoS 2 , which were estimated using B/A exciton ratios and progressively increased with ion fluence. We show that up to the fluences of 1 × 10 14 cm −2 , the MoS 2 lattice remains crystalline and defect densities can be controlled, whereas at higher fluences (≥1 × 10 15 cm −2 ), the large number of introduced defects distorts the excitonic structure of the material. In addition to controlling excitons, defects were used to split bound and free trions, and we demonstrate that at higher fluences (1 × 10 15 cm −2 ), both free and bound trions can be observed in the same PL spectrum. Most importantly, the lifetimes of these states exceed trion and exciton lifetimes in pristine MoS 2 , and PL spectra of irradiated MoS 2 remains unchanged weeks after irradiation experiments. Thus, this work demonstrated the feasibility of engineering novel optical behaviors in low-dimensional materials using heavy ion irradiation. The insights gained from this study will aid in understanding the many-body interactions in low-dimensional materials and may ultimately be used to develop novel materials for optoelectronic applications.more » « less
-
Abstract NaCl has widely been used as a seeding promoter for chemical vapor deposition of large-scale 2D transition metal dichalcogenides. In this work, we report a study of the influence of NaCl on the growth and optical properties of layered CVD-grown WS2using steady-state and time-resolved Kerr rotation measurements at room temperature. Strong photoluminescence (PL) signals from single flakes grown with a low NaCl content indicates direct band-gap emission, whereas flakes grown with higher amounts of NaCl exhibit red-shifted, weaker PL. Raman measurements from single flakes also indicate that WS2grown with higher NaCl amounts result in multilayered structures, while lower NaCl quantities yield monolayer WS2. Ultrafast carrier decay measurements from single flakes also indicate a NaCl-dependent on the valley exchange interaction component (<10 ps) and slower decay components (>50 ps), attributed to a combination of phenomena, such as the band gap transitioning from direct to indirect and defect-related localized states. Our study provides insight into the influence of seeding promoters in layered CVD-grown WS2in particular and 2D transition metal dichalcogenides in general.more » « less
-
Abstract Internal magnetic moments induced by magnetic dopants in MoS2monolayers are shown to serve as a new means to engineer valley Zeeman splitting (VZS). Specifically, successful synthesis of monolayer MoS2doped with the magnetic element Co is reported, and the magnitude of the valley splitting is engineered by manipulating the dopant concentration. Valley splittings of 3.9, 5.2, and 6.15 meV at 7 T in Co‐doped MoS2with Co concentrations of 0.8%, 1.7%, and 2.5%, respectively, are achieved as revealed by polarization‐resolved photoluminescence (PL) spectroscopy. Atomic‐resolution electron microscopy studies clearly identify the magnetic sites of Co substitution in the MoS2lattice, forming two distinct types of configurations, namely isolated single dopants and tridopant clusters. Density functional theory (DFT) and model calculations reveal that the observed enhanced VZS arises from an internal magnetic field induced by the tridopant clusters, which couples to the spin, atomic orbital, and valley magnetic moment of carriers from the conduction and valence bands. The present study demonstrates a new method to control the valley pseudospin via magnetic dopants in layered semiconducting materials, paving the way toward magneto‐optical and spintronic devices.more » « less
An official website of the United States government
