Abstract The electronic properties of 2D materials play a critical role in determining their potential for device applications. Despite rapid developments in 2D semiconductors, studies of fundamental electronic parameters, including the electronic gap and ionization energy, are limited, with significant discrepancies in reported values. The study focuses on tungsten disulfide (WS₂) and investigates the electronic structure of films comprising an increasing number of layers deposited with two different methods: direct synthesis via metal–organic chemical vapor deposition (MOCVD) and additive mechanical transfer of exfoliated single layers. The films are characterized via Raman, UV–vis, and photoluminescence spectroscopies, as well as ultraviolet photoelectron and inverse photoemission spectroscopies (UPS/IPES). The electronic gap of WS₂ is found to decrease from 2.43 eV for the monolayer to 1.97 eV for the trilayer, indicating a bulk transition at the trilayer thickness. This reduction in the electronic gap is primarily due to the downward shift of the conduction band minimum relative to the valence band maximum. A comparative analysis with MOCVD‐grown WS₂ reveals a slightly larger electronic gap for MOCVD‐grown samples, attributed to differences in defect densities. The electronic levels evaluated through UPS/IPES highlight the significant influence of preparation methods on the electronic properties of WS₂. 
                        more » 
                        « less   
                    This content will become publicly available on August 20, 2026
                            
                            Ultrafast carrier dynamics of mono- and few-layer WS 2 through NaCl assisted chemical vapor deposition growth
                        
                    
    
            Abstract NaCl has widely been used as a seeding promoter for chemical vapor deposition of large-scale 2D transition metal dichalcogenides. In this work, we report a study of the influence of NaCl on the growth and optical properties of layered CVD-grown WS2using steady-state and time-resolved Kerr rotation measurements at room temperature. Strong photoluminescence (PL) signals from single flakes grown with a low NaCl content indicates direct band-gap emission, whereas flakes grown with higher amounts of NaCl exhibit red-shifted, weaker PL. Raman measurements from single flakes also indicate that WS2grown with higher NaCl amounts result in multilayered structures, while lower NaCl quantities yield monolayer WS2. Ultrafast carrier decay measurements from single flakes also indicate a NaCl-dependent on the valley exchange interaction component (<10 ps) and slower decay components (>50 ps), attributed to a combination of phenomena, such as the band gap transitioning from direct to indirect and defect-related localized states. Our study provides insight into the influence of seeding promoters in layered CVD-grown WS2in particular and 2D transition metal dichalcogenides in general. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2434668
- PAR ID:
- 10629869
- Publisher / Repository:
- Nanotechnology
- Date Published:
- Journal Name:
- Nanotechnology
- Volume:
- 36
- Issue:
- 34
- ISSN:
- 0957-4484
- Page Range / eLocation ID:
- 345701
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract 2D layered semiconductors have attracted considerable attention for beyond‐Si complementary metal‐oxide‐semiconductor (CMOS) technologies. They can be prepared into ultrathin channel materials toward ultrascaled device architectures, including double‐gate field‐effect‐transistors (DGFETs). This work presents an experimental analysis of DGFETs constructed from chemical vapor deposition (CVD)‐grown monolayer (1L) molybdenum disulfide (MoS2) with atomic layer deposition (ALD) of hafnium oxide (HfO2) high‐k gate dielectrics (top and bottom). This extends beyond previous studies of DGFETs based mostly on exfoliated (few‐nm thick) MoS2flakes, and advances toward large‐area wafer‐scale processing. Here, significant improvements in performance are obtained with DGFETs (i.e., improvements in ON/OFF ratio, ON‐state current, sub‐threshold swing, etc.) compared to single top‐gate FETs. In addition to multi‐gate device architectures (e.g., DGFETs), the scaling of the equivalent oxide thickness (EOT) is crucial toward improved electrostatics required for next‐generation transistors. However, the impact of EOT scaling on the characteristics of CVD‐grown MoS2DGFETs remains largely unexplored. Thus, this work studies the impact of EOT scaling on subthreshold swing (SS) and gate hysteresis using current–voltage (I–V) measurements with varying sweep rates. The experimental analysis and results elucidate the basic mechanisms responsible for improvements in CVD‐grown 1L‐MoS2DGFETs compared to standard top‐gate FETs.more » « less
- 
            Abstract 2D dilute magnetic semiconductors have been recently reported in transition metal dichalcogenides doped with spin‐polarized transition metal atoms, for example vanadium‐doped WS2monolayers, which exhibit room‐temperature ferromagnetic ordering. However, a broadband characterization of the electronic band structure of these doped WS2monolayers and its dependence on vanadium concentration is still lacking. Therefore, power‐dependent photoluminescence, resonant four‐wave mixing, and differential reflectance spectroscopies are performed here to study optical transitions close to the A exciton energy of vanadium‐doped WS2monolayers at three different doping levels. Instead of a single A exciton peak, vanadium‐doped samples exhibit two photoluminescence peaks associated with transitions from a donor‐like level and the conduction band minima. Moreover, resonant Raman and second‐harmonic generation experiments reveal a blueshift in the B exciton energy but no energy change in the C exciton after vanadium doping. Density functional theory calculations show that the band structure is sensitive to the HubbardUcorrection for vanadium, and several scenarios are proposed to explain the two photoluminescence peaks around the A exciton energy region. This work provides the first broadband optical characterization of these 2D dilute magnetic semiconductors, shedding light on the novel and tunable electronic features of V‐doped WS2 monolayers.more » « less
- 
            Abstract The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)‐grown monolayer WS2, it is found that a higher density of transition metal dopants is always incorporated in sulfur‐terminated domains when compared to tungsten‐terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron‐ and vanadium‐doped WS2monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge‐dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten‐zigzag edges, resulting in the formation of open sites at sulfur‐zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in‐plane hetero‐/multi‐junctions that display fascinating electronic, optoelectronic, and magnetic properties.more » « less
- 
            null (Ed.)Excitons in two-dimensional transition metal dichalcogenide monolayers (2D-TMDs) are of essential importance due to their key involvement in 2D-TMD-based applications. For instance, exciton dissociation and exciton radiative recombination are indispensible processes in photovoltaic and light-emitting devices, respectively. These two processes depend drastically on the photogeneration efficiency and lifetime of excitons. Here, we incorporate femtosecond pump–probe spectroscopy to investigate the ultrafast dynamics of exciton formation and decay in a single crystal of monolayer 2D tungsten disulfide (WS 2 ). Investigation of the formation dynamics of the lowest exciton (X A ) indicated that the formation time linearly increases from ∼150 fs upon resonant excitation, to ∼500 fs following excitation that is ∼1.1 eV above the band-gap. This dependence is attributed to the time it takes highly excited electrons in the conduction band (CB) to relax to the CB minimum (CBM) and contribute to the formation of X A . This is confirmed by infrared measurements of electron intraband relaxation dynamics. Furthermore, pump–probe experiments suggested that the X A ground state depletion recovery dynamics depend on the excitation energy as well. The average recovery time increased from ∼10 ps in the case of resonant excitation to ∼50 ps following excitation well above the band-gap. Having the ability to control whether generating short-lived or long-lived electron–hole pairs in 2D-TMD monolayers opens a new horizon for the application of these materials. For instance, long-lived electron–hole pairs are appropriate for photovoltaic devices, but short-lived excitons are more beneficial for lasers with ultrashort pulses.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
