skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying effects of increased hydroperiod on wetland nutrient concentrations during early phases of freshwater restoration of the Florida Everglades
Wetland restoration requires managing long‐term changes in hydroperiod and ecosystem functions. We quantified relationships among spatiotemporal variability in wetland hydrology and total phosphorus (TP) and its stoichiometric relationships with total organic carbon (TOC:TP) and total carbon (TC:TP) and total nitrogen (TN:TP) in water, flocculent organic matter (floc), periphyton, sawgrass (Cladium jamaicense), and soil during early phases of freshwater wetland restoration—water year (WY) 2016 (1 May, 2015 to 30 April, 2016) to WY 2019—in Everglades National Park (ENP, Homestead, FL, U.S.A.). Wetland hydroperiod increased by 87 days, following restoration actions and rainfall events that increased median stage in the upstream source canal. Concentrations of TP were highest and most variable at sites closest (<1 km) to canal inputs and upstream wetland sources of legacy P. Surface water TOC:TP and TN:TP ratios were highest in wetlands >1 km downstream of the canal in wet season 2015 with spatial variability reflecting disturbances including droughts, fires, and freeze events. The TP concentrations of flocculent soil surface particles, periphyton, sawgrass, and consolidated soil declined, and TC:TP and TN:TP ratios increased (except soil) logarithmically with downstream distance from the canal. We measured abrupt increases in periphyton (wet season 2018) and sawgrass TP (wet season 2015 and 2018) at sites <1 km from the canal, likely reflecting legacy TP loading. Our results suggest restoration efforts that increase freshwater inflow and hydroperiod will likely change patterns of nutrient concentrations among water and organic matter compartments of wetlands as a function of nutrient legacies.  more » « less
Award ID(s):
1832229 1237517 0620409
PAR ID:
10373231
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
28
Issue:
6
ISSN:
1061-2971
Page Range / eLocation ID:
p. 1561-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate and human modifications, including restoration, are changing freshwater availability in wetland ecosystems. Changes in spatiotemporal variability in water depth can influence biogeochemistry and aquatic metabolism (net ecosystem productivity, gross primary productivity [GPP], and ecosystem respiration [ER]). In subtropical wetlands, flocculent organic matter (floc) is a dominant form of organic matter made up of periphyton, macrophytes, and microbes. How changes in water depth with climate and human modifications of subtropical wetlands influence biogeochemistry and the metabolism of floc is uncertain and necessary to understand the consequences for carbon (C) cycling. We collected seasonal floc samples from shorter‐hydroperiod marshes (Taylor Slough Panhandle [TS/Ph]) and longer‐hydroperiod marshes (Shark River Slough [SRS]) in Everglades National Park (Florida, U.S.A.). We measured floc‐specific metabolism and biogeochemistry during the wet (May–November) and dry seasons (December–April) when marsh conditions differed in water depth, photosynthetically active radiation (PAR), floc chlorophylla, bulk density, and C and nutrients. Floc biogeochemistry was driven by hydrologic changes in water depth, while floc metabolism was influenced by floc biogeochemistry and PAR in both marshes. Floc‐specific metabolism was more net heterotrophic (GPP < ER) in TS/Ph than in SRS, driven by floc bulk density, total nitrogen, total C, total phosphorus, and total inorganic C. Increasing water depths with freshwater restoration may drive higher rates of C loss in shallower compared to deeper marshes. Understanding how hydrologic changes affect organic matter lability and respiration is important in managing C storage in ecosystems. 
    more » « less
  2. Dissolved organic matter (DOM) drives biogeochemical processes in aquatic ecosystems. Yet, how hydrologic restoration in nutrient‐enriched ecosystems changes DOM and the consequences of those changes for the carbon cycle remain unclear. To predict the consequences of hydrologic restoration on carbon cycling in restored wetlands, we need to understand how local environmental factors influence production, processing, and transport of DOM. We collected surface water samples along transects in restored peat (organic‐rich, macrophyte‐dominated) and marl (carbonate, periphyton‐dominated) freshwater marshes in the Everglades (Florida, U.S.A.) that varied in environmental factors (water depth, phosphorus [P] concentrations [water, macrophytes, periphyton, and soil], and primary producer biomass) to understand drivers of dissolved organic carbon (DOC) concentrations and DOM composition. Higher water depths led to a “greening” of DOM, due to increasing algal contributions, with decreasing concentrations of DOC in peat wetlands, and a “browning” of DOM, due to increasing humic contributions, with increasing DOC concentrations in marl wetlands. Soil total P was positively correlated with DOC concentrations and microbial contributions to DOM in peat wetlands, and periphyton total P was positively correlated with algal contributions to DOM in marl wetlands. Despite large variations in both vegetation biomass and periphyton biovolume across transects and sites, neither were predictors of DOC concentrations or DOM composition. Hydrologic restoration differentially alters DOM in peat and marl marshes and interacts with nutrient enrichment to shift proportions of green and brown contributions to surface water chemistry, which has the potential to modify wetland food webs, as well as the processing of carbon by micro‐organisms. 
    more » « less
  3. Abstract Degradation of wetland ecosystems results from loss of hydrologic connectivity, nutrient enrichment, and altered fire regimes, among other factors. It is uncertain how drivers of wetland ecosystem processes and wetland vegetation communities interact in reversing the ecological trajectory from degraded to restored conditions. We analyzed biogeochemical and vegetation data collected in wetlands of the Florida Everglades at the start of (2015) and during (2018 and 2021) the initial stages of rehydration. Our objectives were to analyze the allocation of carbon and nutrients among ecosystem compartments and correlated trajectories of vegetation community change following rehydration, to identify the drivers of change, including fire, and analyze macrophyte species‐specific responses to drivers. We expected to see changes in vegetation toward more hydric communities that would differ based on wetland baseline conditions and the magnitude of the hydrologic change. During the study period, both length of inundation and surface water depth increased throughout wetlands in the region, and four fires occurred, which affected 51% of the sampling locations. We observed biogeochemical shifts in the wetland landscape, driven by both hydrology and fire. Total phosphorus concentrations in soil and flocculent detrital material decreased, while soil carbon:phosphorus and nitrogen:phosphorus mass ratios increased at sites further away from water management infrastructure. Transitions in vegetation communities were driven by an increase in hydroperiods and by the distinct changes in nutrient concentrations or soil stoichiometric ratios in each subregion. The abundance of macrophyte species typical of short‐hydroperiod prairies strongly decreased, while dominant long‐hydroperiod species, such asEleocharis cellulosa, expanded. Fire facilitated the expansion of thickly vegetated plumes of invasiveTyphaat sites close to the water inflow sources. Overall, restored hydrology shifted vegetation community composition toward higher abundance of long‐hydroperiod species within six years. In contrast, removal of invasive vegetation controlled by soil phosphorus concentrations will likely require long‐term and interactive restoration strategies. 
    more » « less
  4. Abstract Long‐term ecological research can resolve effects of disturbance on ecosystem dynamics by capturing the scale of disturbance and interactions with environmental changes. To quantify how disturbances interact with long‐term directional changes (sea‐level rise, freshwater restoration), we studied 17 yr of monthly dissolved organic carbon (DOC), total nitrogen (TN), and phosphorus (TP) concentrations and bacterioplankton productivity across freshwater‐to‐marine estuary gradients exposed to multiple disturbance events (e.g., droughts, fire, hurricanes, and low‐temperature anomalies) and long‐term increases in water levels. By studying two neighboring drainages that differ in hydrologic connectivity, we additionally tested how disturbance legacies are shaped by hydrologic connectivity. We predicted that disturbance events would interact with long‐term increases in water levels in freshwater and marine ecosystems to increase spatiotemporal similarity (i.e., synchrony) of organic matter, nutrients, and microbial activities. Wetlands along the larger, deeper, and tidally influenced Shark River Slough (SRS) drainage had higher and more variable DOC, TN, and TP concentrations than wetlands along the smaller, shallower, tidally restricted Taylor River Slough/Panhandle (TS/Ph) drainage. Along SRS, DOC concentrations declined with proximity to coast, and increased in magnitude and variability following drought and flooding in 2015 and a hurricane in 2017. Along TS/Ph, DOC concentrations varied by site (higher in marine than freshwater wetlands) but not year. In both drainages, increases in TN from upstream freshwater marshes occurred following fire in 2008 and droughts in 2010 and 2015, whereas downstream increases in TP occurred with coastal storm surge from hurricanes in 2005 and 2017. Decreases in DOC:TN and DOC:TP were explained by increased TN and TP. Increases in bacterioplankton productivity occurred throughout both drainages following low‐temperature events (2010 and 2011) and a hurricane (2017). Long‐term TN and TP concentrations and bacterioplankton productivity were correlated (r > 0.5) across a range of sampling distances (1–50 km), indicating spatiotemporal synchrony. DOC concentrations were not synchronized across space or time. Our study advances disturbance ecology theory by illustrating how disturbance events interact with long‐term environmental changes and hydrologic connectivity to determine the magnitude and extent of disturbance legacies. Understanding disturbance legacies will enhance prediction and enable more effective management of rapidly changing ecosystems. 
    more » « less
  5. Net ecosystem carbon balance is a comprehensive assessment of ecosystem function that can test restoration effectiveness. Coastal peatlands are globally important carbon sinks that are vulnerable to carbon loss with saltwater intrusion. It is uncertain how wetland carbon stocks and fluxes change during freshwater restoration following exposure to saltwater and elevated nutrients. We restored freshwater to sawgrass (Cladium jamaicense) peat monoliths from freshwater marshes of the Everglades (Florida, U.S.A.) that had previously been exposed to elevated salinity (approximately9 ppt) and phosphorus (P) loading (1 g P m−2year−1) in wetland mesocosms. We quantified changes in water and soil physicochemistry, plant and soil carbon and nutrient standing stocks, and net ecosystem productivity during restoration. Added freshwater immediately reduced porewater salinity from >8 to approximately 2 ppt, but elevated porewater dissolved organic carbon persisted. Above‐ and belowground biomass, leaf P concentrations, and instantaneous rates of gross ecosystem productivity (GEP) and ecosystem respiration (ER) remained elevated from prior added P. Modeled monthly GEP and ER were higher in marshes with saltwater and P legacies, resulting in negative net ecosystem productivities that were up to 12× lower than controls. Leaf litter breakdown rates and litter P concentrations were 2× higher in marshes with legacies of added saltwater and P. Legacies of saltwater and P on carbon loss persisted despite freshwater restoration, but recovery was greatest for freshwater marshes exposed to saltwater alone. Our results suggest that restoration in nutrient‐limited freshwater wetlands exposed to saltwater intrusion and nutrient enrichment is a slow process. 
    more » « less