Abstract The collisionless nature of planetary magnetospheres means that electromagnetic forces are fundamental in controlling the flow of energy and momentum through these systems. We use Pioneer Venus Orbiter (PVO) observations to demonstrate that the magnetic pumping process can be active at Venus, in analogy to its recent discovery at Mars. The presented case study demonstrates the framework for how the process can work at Venus, and the results of a statistical analysis show that the ambient plasma conditions support the process being active. Magnetic pumping enables low frequency magnetosonic waves to heat ambient ionospheric electrons and provides a mechanism that couples the solar wind to the Venusian ionosphere. This is the first time the magnetic pumping process has been discussed at Venus.
more »
« less
Photovoltaic operation in the lower atmosphere and at the surface of Venus
Abstract Low‐intensity high‐temperature (LIHT) solar cells are needed for extended photovoltaic power generation in both the lower atmosphere as well as at the surface of Venus. Double‐junction GaInP/GaAs solar cells that may be able to operate and survive, with suitable encapsulation, for several weeks on the 465°C Venus surface have been developed. These solar cells have been optimized for operation under the Venus solar spectrum, which is different from that of the Earth.
more »
« less
- Award ID(s):
- 1806311
- PAR ID:
- 10373232
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Progress in Photovoltaics: Research and Applications
- Volume:
- 28
- Issue:
- 6
- ISSN:
- 1062-7995
- Page Range / eLocation ID:
- p. 545-553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. Parker Solar Probe (PSP) performs Venus gravity assists (VGAs) in order to lower its perihelion. PSP takes high-cadence electric and magnetic field observations during these VGAs, providing the opportunity to study plasma waves in Venus’s induced magnetosphere. Aims. We summarize the plasma environment during these VGAs, including the regions of near-Venus space that PSP traversed and the key boundary crossings. We comprehensively identify Langmuir, ion acoustic, whistler-mode, and ion cyclotron waves during these VGAs and map the location of these waves throughout near-Venus space. Methods. This study analyzes different data products from the PSP FIELDS instrument suite from throughout the first five VGAs. Results. We compare the FIELDS instrumentation capabilities to the capabilities of the plasma wave instruments on board the Pioneer Venus Orbiter (PVO) and the Venus Express (VEX). We find that the PVO electric field instrument was well suited to observe Langmuir waves, especially near the bow shock and in the foreshock. However, evaluation of the other plasma waves detected by PSP FIELDS reveals that PVO and VEX would have often been unable to observe key features of these waves modes, including maximum power, bandwidth, and propagation direction. These wave characteristics provide critical information on the wave generation mechanisms and wave-particle interactions, so provide fundamental information on the nature of Venus’s induced magnetosphere. Conclusions. These results highlight the advances in plasma wave instrumentation capabilities that have been made in the decades since the PVO and VEX eras, and illustrate the value of a plasma wave instrument on a new Venus mission.more » « less
-
Abstract Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells.more » « less
-
Abstract We explore the potential for repeat‐pass SAR Interferometry (InSAR) correlation to track volcanic activity on Venus' surface motivated by future SAR missions to Earth's sister planet. We use Hawai'i as a natural laboratory to test whether InSAR can detect lava flows assuming orbital and instrument parameters similar to that of a Venus mission. Hawai'i was chosen because lava flows are frequent, and well documented by the United States Geological Survey, and because Hawai'i is a SAR supersite, where space agencies have offered open radar data sets for analysis. These data sets have different wavelengths (L, C, and X bands), bandwidths, polarizations, look angles, and a variety of orbital baselines, giving opportunity to assess the suitability of parameters for detecting lava flows. We analyze data from ALOS‐2 (L‐band), Sentinel‐1 (C‐band), and COSMO‐SkyMed (X‐band) spanning 2018 and 2022. We perform SAR amplitude and InSAR correlation analysis over temporal baselines and perpendicular baselines similar to those of a Venus mission. Fresh lava flows create a sharp, noticeable decrease in InSAR correlation that persists indefinitely for images spanning the event. The same lava flows are not always visible in the corresponding amplitude images. Moreover, noticeable decorrelation persists in image pairs acquired months after the events due to post‐emplacement contraction of flows. Post‐emplacement effects are hypothesized to last longer on the Venusian surface, increasing the likelihood of detecting Venus lava flows using InSAR. We argue for further focus on repeat‐pass InSAR capabilities in upcoming Venus missions, to detect and quantify volcanic activity on Earth's hotter twin.more » « less
-
Abstract Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future.more » « less
An official website of the United States government
