skip to main content


Title: Revealing the Impact of F4‐TCNQ as Additive on Morphology and Performance of High‐Efficiency Nonfullerene Organic Solar Cells
Abstract

Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells.

 
more » « less
Award ID(s):
1639429
NSF-PAR ID:
10463179
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
29
Issue:
1
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cnon the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.

     
    more » « less
  2. Abstract

    The synthesis and characterization of new semiconducting materials is essential for developing high‐efficiency organic solar cells. Here, the synthesis, physiochemical properties, thin film morphology, and photovoltaic response of ITN‐F4 and ITzN‐F4, the first indacenodithienothiophene nonfullerene acceptors that combine π‐extension and fluorination, are reported. The neat acceptors and bulk‐heterojunction blend films with fluorinated donor polymer poly{[4,8‐bis[5‐(2‐ethylhexyl)‐4‐fluoro‐2‐thienyl]benzo[1,2‐b:4,5‐b′]‐dithiophene‐2,6‐diyl]‐alt‐[2,5‐thiophenediyl[5,7‐bis(2‐ethylhexyl)‐4,8‐dioxo‐4H,8H‐benzo[1,2‐c:4,5‐c′]dithiophene‐1,3‐diyl]]} (PBDB‐TF, also known as PM6) are investigated using a battery of techniques, including single crystal X‐ray diffraction, fs transient absorption spectroscopy (fsTA), photovoltaic response, space‐charge‐limited current transport, impedance spectroscopy, grazing incidence wide angle X‐ray scattering, and density functional theory level computation. ITN‐F4 and ITzN‐F4 are found to provide power conversion efficiencies greater and internal reorganization energies less than their non‐π‐extended and nonfluorinated counterparts when paired with PBDB‐TF. Additionally, ITN‐F4 and ITzN‐F4 exhibit favorable bulk‐heterojunction relevant single crystal packing architectures. fsTA reveals that both ITN‐F4 and ITzN‐F4 undergo ultrafast hole transfer (<300 fs) in films with PBDB‐TF, despite excimer state formation in both the neat and blend films. Taken together and in comparison to related structures, these results demonstrate that combined fluorination and π‐extension synergistically promote crystallographic π‐face‐to‐face packing, increase crystallinity, reduce internal reorganization energies, increase interplanar π–π electronic coupling, and increase power conversion efficiency.

     
    more » « less
  3. Abstract

    Understanding the correlation between polymer aggregation, miscibility, and device performance is important to establish a set of chemistry design rules for donor polymers with nonfullerene acceptors (NFAs). Employing a donor polymer with strong temperature‐dependent aggregation, namely PffBT4T‐2OD [poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3″′‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2″′‐quaterthiophen‐5,5‐diyl)], also known as PCE‐11 as a base polymer, five copolymer derivatives having a different thiophene linker composition are blended with the common NFA O‐IDTBR to investigate their photovoltaic performance. While the donor polymers have similar optoelectronic properties, it is found that the device power conversion efficiency changes drastically from 1.8% to 8.7% as a function of thiophene content in the donor polymer. Results of structural characterization show that polymer aggregation and miscibility with O‐IDTBR are a strong function of the chemical composition, leading to different donor–acceptor blend morphology. Polymers having a strong tendency to aggregate are found to undergo fast aggregation prior to liquid–liquid phase separation and have a higher miscibility with NFA. These properties result in smaller mixed donor–acceptor domains, stronger PL quenching, and more efficient exciton dissociation in the resulting cells. This work indicates the importance of both polymer aggregation and donor–acceptor interaction on the formation of bulk heterojunctions in polymer:NFA blends.

     
    more » « less
  4.  
    more » « less
  5. Abstract

    Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future.

     
    more » « less