skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A computational framework for discovering digital biomarkers of glycemic control
Abstract Digital biomarkers can radically transform the standard of care for chronic conditions that are complex to manage. In this work, we propose a scalable computational framework for discovering digital biomarkers of glycemic control. As a feasibility study, we leveraged over 79,000 days of digital data to define objective features, model the impact of each feature, classify glycemic control, and identify the most impactful digital biomarkers. Our research shows that glycemic control varies by age group, and was worse in the youngest population of subjects between the ages of 2–14. In addition, digital biomarkers like prior-day time above range and prior-day time in range, as well as total daily bolus and total daily basal were most predictive of impending glycemic control. With a combination of the top-ranked digital biomarkers, we achieved an average F1 score of 82.4% and 89.7% for classifying next-day glycemic control across two unique datasets.  more » « less
Award ID(s):
2037267
PAR ID:
10373269
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Digital Medicine
Volume:
5
Issue:
1
ISSN:
2398-6352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background:Achieving optimal glycemic control for persons with diabetes remains difficult. Real-world continuous glucose monitoring (CGM) data can illuminate previously underrecognized glycemic fluctuations. We aimed to characterize glucose trajectories in individuals with Type 1 and Type 2 diabetes, and to examine how baseline glycemic control, CGM usage frequency, and regional differences shape these patterns. Methods:We linked Dexcom CGM data (2015–2020) with Veterans Health Administration electronic health records, identifying 892 Type 1 and 1716 Type 2 diabetes patients. Analyses focused on the first three years of CGM use, encompassing over 2.1 million glucose readings. We explored temporal trends in average daily glucose and time-in-range values. Results:Both Type 1 and Type 2 cohorts exhibited a gradual rise in mean daily glucose over time, although higher CGM usage frequency was associated with lower overall glucose or attenuated increases. Notable weekly patterns emerged: Sundays consistently showed the highest glucose values, whereas Wednesdays tended to have the lowest. Seasonally, glycemic control deteriorated from October to February and rebounded from April to August, with more pronounced fluctuations in the Northeast compared to the Southwest U.S. Conclusions:Our findings underscore the importance of recognizing day-of-week and seasonal glycemic variations in diabetes management. Tailoring interventions to account for these real-world fluctuations may enhance patient engagement, optimize glycemic control, and ultimately improve health outcomes. 
    more » « less
  2. Seasonal variations in glycemic trends remain largely unstudied despite the growing prevalence of diabetes. To address this gap, our objective is to investigate temporal changes in glycemic trends by analyzing intensively sampled blood glucose data from 137 patients (ages 2 to 76, primarily type 1 diabetes) over the course of 9 months to 4.5 years. From over 91,000 days of continuous glucose monitor data, we found that glycemic control decreases significantly around the holidays, with the largest decline observed on New Year’s Day among the patients with already poor glycemic control (i.e., <55% time in the target range). We also observed seasonal variations in glycemic trends, with patients having worse glycemic control in the months of November to February (i.e., mid-fall and winter, in the United States), and better control in the months of April to August (i.e., mid-spring and summer). These insights are critical to inform targeted interventions that can improve diabetes outcomes. 
    more » « less
  3. Abstract BackgroundEffective diabetes management requires precise glycemic control to prevent both hypoglycemia and hyperglycemia, yet existing machine learning (ML) and reinforcement learning (RL) approaches often fail to balance competing objectives. Traditional RL-based glucose regulation systems primarily focus on single-objective optimization, overlooking factors such as minimizing insulin overuse, reducing glycemic variability, and ensuring patient safety. Furthermore, these approaches typically rely on centralized data processing, which raises privacy concerns due to the sensitive nature of health care data. There is a critical need for a decentralized, privacy-preserving framework that can personalize blood glucose regulation while addressing the multiobjective nature of diabetes management. ObjectiveThis study aimed to develop and validate PRIMO-FRL (Privacy-Preserving Reinforcement Learning for Individualized Multi-Objective Glycemic Management Using Federated Reinforcement Learning), a novel framework that optimizes clinical objectives—maximizing time in range (TIR), reducing hypoglycemia and hyperglycemia, and minimizing glycemic risk—while preserving patient privacy. MethodsWe developed PRIMO-FRL, integrating multiobjective reward shaping to dynamically balance glucose stability, insulin efficiency, and risk reduction. The model was trained and tested using simulated data from 30 simulated patients (10 children, 10 adolescents, and 10 adults) generated with the Food and Drug Administration (FDA)–approved UVA/Padova simulator. A comparative analysis was conducted against state-of-the-art RL and ML models, evaluating performance using metrics such as TIR, hypoglycemia (<70 mg/dL), hyperglycemia (>180 mg/dL), and glycemic risk scores. ResultsThe PRIMO-FRL model achieved a robust overall TIR of 76.54%, with adults demonstrating the highest TIR at 81.48%, followed by children at 77.78% and adolescents at 70.37%. Importantly, the approach eliminated hypoglycemia, with 0.0% spent below 70 mg/dL across all cohorts, significantly outperforming existing methods. Mild hyperglycemia (180-250 mg/dL) was observed in adolescents (29.63%), children (22.22%), and adults (18.52%), with adults exhibiting the best control. Furthermore, the PRIMO-FRL approach consistently reduced glycemic risk scores, demonstrating improved safety and long-term stability in glucose regulation.. ConclusionsOur findings highlight the potential of PRIMO-FRL as a transformative, privacy-preserving approach to personalized glycemic management. By integrating federated RL, this framework eliminates hypoglycemia, improves TIR, and preserves data privacy by decentralizing model training. Unlike traditional centralized approaches that require sharing sensitive health data, PRIMO-FRL leverages federated learning to keep patient data local, significantly reducing privacy risks while enabling adaptive and personalized glucose control. This multiobjective optimization strategy offers a scalable, secure, and clinically viable solution for real-world diabetes care. The ability to train personalized models across diverse populations without exposing raw data makes PRIMO-FRL well-suited for deployment in privacy-sensitive health care environments. These results pave the way for future clinical adoption, demonstrating the potential of privacy-preserving artificial intelligence in optimizing glycemic regulation while maintaining security, adaptability, and personalization. 
    more » « less
  4. Abstract Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose‐responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed‐loop insulin delivery or “smart insulin” systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose‐responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose‐responsive moieties, including glucose oxidase, phenylboronic acid, and glucose‐binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed. 
    more » « less
  5. Monitoring glucose levels is critical for effective diabetes management. Continuous glucose monitoring devices estimate interstitial glucose levels and provide alerts for glycemic excursions. However, they are expensive and invasive. Therefore, low-cost, noninvasive alternatives are useful for patients with diabetes. In this article, we explore electrocardiogram signals as a potential alternative to detecting glycemic excursions by extracting intrabeat (beat-morphology) and inter-beat (heart rate variability) information. Unlike prior methods that focused only on the standard clinical excursion thresholds (70 mg/dL for hypoglycemia, 180 mg/dL for hyperglycemia), our proposed approach trains independent machine learning models at various excursion thresholds, aggregating their outputs for a final prediction. This allows learning morphological patterns in the neighborhood of the standard excursion thresholds. Our personalized fusion models achieve an AUC of 75 % for hypoglycemia and 78% for hyperglycemia detection across patients, resulting in an average improvement of 4 % compared to the baseline models (trained using only standard clinical thresholds) for detecting glycemic excursions. We also find that combining morphology and HRV information outperforms using them individually (5 % for hypoglycemia and 6 % for hyperglycemia). The data used in this article was collected from 12 patients with type-1 diabetes, each monitored over a 14-day period at Texas Children’s Hospital, Houston. The results indicate that a combination of morphological and HRV features is essential for noninvasive detection of glycemic excursions. Also, morphological changes can happen at varying glucose levels for different patients and capturing these changes provide valuable information that leads to improved prediction performance for detecting glycemic excursions. 
    more » « less