skip to main content


Title: A computational framework for discovering digital biomarkers of glycemic control
Abstract

Digital biomarkers can radically transform the standard of care for chronic conditions that are complex to manage. In this work, we propose a scalable computational framework for discovering digital biomarkers of glycemic control. As a feasibility study, we leveraged over 79,000 days of digital data to define objective features, model the impact of each feature, classify glycemic control, and identify the most impactful digital biomarkers. Our research shows that glycemic control varies by age group, and was worse in the youngest population of subjects between the ages of 2–14. In addition, digital biomarkers like prior-day time above range and prior-day time in range, as well as total daily bolus and total daily basal were most predictive of impending glycemic control. With a combination of the top-ranked digital biomarkers, we achieved an average F1 score of 82.4% and 89.7% for classifying next-day glycemic control across two unique datasets.

 
more » « less
Award ID(s):
2037267
PAR ID:
10373269
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Digital Medicine
Volume:
5
Issue:
1
ISSN:
2398-6352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seasonal variations in glycemic trends remain largely unstudied despite the growing prevalence of diabetes. To address this gap, our objective is to investigate temporal changes in glycemic trends by analyzing intensively sampled blood glucose data from 137 patients (ages 2 to 76, primarily type 1 diabetes) over the course of 9 months to 4.5 years. From over 91,000 days of continuous glucose monitor data, we found that glycemic control decreases significantly around the holidays, with the largest decline observed on New Year’s Day among the patients with already poor glycemic control (i.e., <55% time in the target range). We also observed seasonal variations in glycemic trends, with patients having worse glycemic control in the months of November to February (i.e., mid-fall and winter, in the United States), and better control in the months of April to August (i.e., mid-spring and summer). These insights are critical to inform targeted interventions that can improve diabetes outcomes.

     
    more » « less
  2. Abstract

    We investigated whether daily experiences of conflict with family and peers were associated with fluctuations in diurnal cortisol, and whether sleep buffers the associations between conflict and diurnal cortisol. A racially diverse sample of 370 adolescents (ages 11–18; 57.3% female) provided daily diaries for 5 days and saliva samples for 4 days. Hierarchical linear models tested how peer and family conflict were associated with diurnal cortisol (i.e., total cortisol output, cortisol slope, and cortisol awakening response) the next day, and whether these associations were moderated by sleep duration the previous night. When adolescents experienced peer conflict, they showed higher area under the curve (AUC) the next day if they had slept less the night prior to conflict, but relatively lower cortisol awakening response (CAR) and flatter cortisol slope the next day if they had slept more the night prior to conflict. When adolescents experienced family conflict, they also showed higher AUC the next day if they had slept less the night prior to conflict, but higher CAR the next day if they had slept more the night prior to conflict. Family conflict and sleep were not directly or interactively related to cortisol slope.

     
    more » « less
  3. Abstract

    Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose‐responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed‐loop insulin delivery or “smart insulin” systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose‐responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose‐responsive moieties, including glucose oxidase, phenylboronic acid, and glucose‐binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.

     
    more » « less
  4. Monitoring glucose levels is critical for effective diabetes management. Continuous glucose monitoring devices estimate interstitial glucose levels and provide alerts for glycemic excursions. However, they are expensive and invasive. Therefore, low-cost, noninvasive alternatives are useful for patients with diabetes. In this article, we explore electrocardiogram signals as a potential alternative to detecting glycemic excursions by extracting intrabeat (beat-morphology) and inter-beat (heart rate variability) information. Unlike prior methods that focused only on the standard clinical excursion thresholds (70 mg/dL for hypoglycemia, 180 mg/dL for hyperglycemia), our proposed approach trains independent machine learning models at various excursion thresholds, aggregating their outputs for a final prediction. This allows learning morphological patterns in the neighborhood of the standard excursion thresholds. Our personalized fusion models achieve an AUC of 75 % for hypoglycemia and 78% for hyperglycemia detection across patients, resulting in an average improvement of 4 % compared to the baseline models (trained using only standard clinical thresholds) for detecting glycemic excursions. We also find that combining morphology and HRV information outperforms using them individually (5 % for hypoglycemia and 6 % for hyperglycemia). The data used in this article was collected from 12 patients with type-1 diabetes, each monitored over a 14-day period at Texas Children’s Hospital, Houston. The results indicate that a combination of morphological and HRV features is essential for noninvasive detection of glycemic excursions. Also, morphological changes can happen at varying glucose levels for different patients and capturing these changes provide valuable information that leads to improved prediction performance for detecting glycemic excursions. 
    more » « less
  5. Both long- and short-term glycemic variability have been associated with incident diabetes complications. We evaluated their relative and potential additive effects on incident renal complications in the Action to Control Cardiovascular Risk in Diabetes trial. A marker of short-term glycemic variability, 1,5-anhydroglucitol (1,5-AG), was measured in 4,000 random 12-month postrandomization plasma samples (when hemoglobin A1c [HbA1c] was stable). Visit-to-visit fasting plasma glucose coefficient of variation (CV-FPG) was determined from 4 months postrandomization until the end point of microalbuminuria or macroalbuminuria. Using Cox proportional hazards models, high CV-FPG and low 1,5-AG were independently associated with microalbuminuria after adjusting for clinical risk factors. However, only the CV-FPG association remained after additional adjustment for average HbA1c. Only CV-FPG was a significant risk factor for macroalbuminuria. This post hoc analysis indicates that long-term rather than short-term glycemic variability better predicts the risk of renal disease in type 2 diabetes.

    Article Highlights

    The relative and potential additive effects of long- and short-term glycemic variability on the development of diabetic complications are unknown. We aimed to assess the individual and combined relationships of long-term visit-to-visit glycemic variability, measured as the coefficient of variation of fasting plasma glucose, and short-term glucose fluctuation, estimated by the biomarker 1,5-anhydroglucitol, with the development of proteinuria. Both estimates of glycemic variability were independently associated with microalbuminuria, but only long-term glycemic variability remained significant after adjusting for average hemoglobin A1c. Our findings suggest that longer-term visit-to-visit glucose variability improves renal disease prediction in type 2 diabetes.

     
    more » « less