skip to main content


Title: Understanding temporal changes and seasonal variations in glycemic trends using wearable data

Seasonal variations in glycemic trends remain largely unstudied despite the growing prevalence of diabetes. To address this gap, our objective is to investigate temporal changes in glycemic trends by analyzing intensively sampled blood glucose data from 137 patients (ages 2 to 76, primarily type 1 diabetes) over the course of 9 months to 4.5 years. From over 91,000 days of continuous glucose monitor data, we found that glycemic control decreases significantly around the holidays, with the largest decline observed on New Year’s Day among the patients with already poor glycemic control (i.e., <55% time in the target range). We also observed seasonal variations in glycemic trends, with patients having worse glycemic control in the months of November to February (i.e., mid-fall and winter, in the United States), and better control in the months of April to August (i.e., mid-spring and summer). These insights are critical to inform targeted interventions that can improve diabetes outcomes.

 
more » « less
Award ID(s):
2322879
PAR ID:
10534791
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
38
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Evidence to guide type 2 diabetes treatment individualization is limited. We evaluated heterogeneous treatment effects (HTE) of intensive glycemic control in type 2 diabetes patients on major adverse cardiovascular events (MACE) in the Action to Control Cardiovascular Risk in Diabetes Study (ACCORD) and the Veterans Affairs Diabetes Trial (VADT). Methods Causal forests machine learning analysis was performed using pooled individual data from two randomized trials (n = 12,042) to identify HTE of intensive versus standard glycemic control on MACE in patients with type 2 diabetes. We used variable prioritization from causal forests to build a summary decision tree and examined the risk difference of MACE between treatment arms in the resulting subgroups. Results A summary decision tree used five variables (hemoglobin glycation index, estimated glomerular filtration rate, fasting glucose, age, and body mass index) to define eight subgroups in which risk differences of MACE ranged from − 5.1% (95% CI − 8.7, − 1.5) to 3.1% (95% CI 0.2, 6.0) (negative values represent lower MACE associated with intensive glycemic control). Intensive glycemic control was associated with lower MACE in pooled study data in subgroups with low (− 4.2% [95% CI − 8.1, − 1.0]), intermediate (− 5.1% [95% CI − 8.7, − 1.5]), and high (− 4.3% [95% CI − 7.7, − 1.0]) MACE rates with consistent directions of effect in ACCORD and VADT alone. Conclusions This data-driven analysis provides evidence supporting the diabetes treatment guideline recommendation of intensive glucose lowering in diabetes patients with low cardiovascular risk and additionally suggests potential benefits of intensive glycemic control in some individuals at higher cardiovascular risk. 
    more » « less
  2. Monitoring glucose levels is critical for effective diabetes management. Continuous glucose monitoring devices estimate interstitial glucose levels and provide alerts for glycemic excursions. However, they are expensive and invasive. Therefore, low-cost, noninvasive alternatives are useful for patients with diabetes. In this article, we explore electrocardiogram signals as a potential alternative to detecting glycemic excursions by extracting intrabeat (beat-morphology) and inter-beat (heart rate variability) information. Unlike prior methods that focused only on the standard clinical excursion thresholds (70 mg/dL for hypoglycemia, 180 mg/dL for hyperglycemia), our proposed approach trains independent machine learning models at various excursion thresholds, aggregating their outputs for a final prediction. This allows learning morphological patterns in the neighborhood of the standard excursion thresholds. Our personalized fusion models achieve an AUC of 75 % for hypoglycemia and 78% for hyperglycemia detection across patients, resulting in an average improvement of 4 % compared to the baseline models (trained using only standard clinical thresholds) for detecting glycemic excursions. We also find that combining morphology and HRV information outperforms using them individually (5 % for hypoglycemia and 6 % for hyperglycemia). The data used in this article was collected from 12 patients with type-1 diabetes, each monitored over a 14-day period at Texas Children’s Hospital, Houston. The results indicate that a combination of morphological and HRV features is essential for noninvasive detection of glycemic excursions. Also, morphological changes can happen at varying glucose levels for different patients and capturing these changes provide valuable information that leads to improved prediction performance for detecting glycemic excursions. 
    more » « less
  3. Both long- and short-term glycemic variability have been associated with incident diabetes complications. We evaluated their relative and potential additive effects on incident renal complications in the Action to Control Cardiovascular Risk in Diabetes trial. A marker of short-term glycemic variability, 1,5-anhydroglucitol (1,5-AG), was measured in 4,000 random 12-month postrandomization plasma samples (when hemoglobin A1c [HbA1c] was stable). Visit-to-visit fasting plasma glucose coefficient of variation (CV-FPG) was determined from 4 months postrandomization until the end point of microalbuminuria or macroalbuminuria. Using Cox proportional hazards models, high CV-FPG and low 1,5-AG were independently associated with microalbuminuria after adjusting for clinical risk factors. However, only the CV-FPG association remained after additional adjustment for average HbA1c. Only CV-FPG was a significant risk factor for macroalbuminuria. This post hoc analysis indicates that long-term rather than short-term glycemic variability better predicts the risk of renal disease in type 2 diabetes.

    Article Highlights

    The relative and potential additive effects of long- and short-term glycemic variability on the development of diabetic complications are unknown. We aimed to assess the individual and combined relationships of long-term visit-to-visit glycemic variability, measured as the coefficient of variation of fasting plasma glucose, and short-term glucose fluctuation, estimated by the biomarker 1,5-anhydroglucitol, with the development of proteinuria. Both estimates of glycemic variability were independently associated with microalbuminuria, but only long-term glycemic variability remained significant after adjusting for average hemoglobin A1c. Our findings suggest that longer-term visit-to-visit glucose variability improves renal disease prediction in type 2 diabetes.

     
    more » « less
  4. Abstract Aims The association of glycemic variability with microvascular disease complications in type 2 diabetes (T2D) has been under-studied and remains unclear. We investigated this relationship using both Action to Control Cardiovascular Risk in Diabetes (ACCORD) and the Veteran Affairs Diabetes Trial (VADT). Methods In ACCORD, fasting plasma glucose (FPG) was measured 1 to 3 times/year for up to 84 months in 10 251 individuals. In the VADT, FPG was measured every 3 months for up to 87 months in 1791 individuals. Variability measures included coefficient of variation (CV) and average real variability (ARV) for fasting glucose. The primary composite outcome was time to either severe nephropathy or retinopathy event and secondary outcomes included each outcome individually. To assess the association, we considered variability measures as time-dependent covariates in Cox proportional hazard models. We conducted a meta-analysis across the 2 trials to estimate the risk of fasting glucose variability as well as to assess the heterogenous effects of FPG variability across treatment arms. Results In both ACCORD and the VADT, the CV and ARV of FPG were associated with development of future microvascular outcomes even after adjusting for other risk factors, including measures of average glycemic control (ie, cumulative average of HbA1c). Meta-analyses of these 2 trials confirmed these findings and indicated FPG variation may be more harmful in those with less intensive glucose control. Conclusions This post hoc analysis indicates that variability of FPG plays a role in, and/or is an independent and readily available marker of, development of microvascular complications in T2D. 
    more » « less
  5. The development of fully autonomous artificial pancreas systems (APS) that independently regulate the glucose levels of patients with Type 1 diabetes has been a long-standing goal of diabetes research. A significant barrier to progress is the difficulty of testing new control algorithms and safety features, since clinical trials are time- and resource-intensive. To facilitate ease of validation, we propose an open-source APS testbed that can integrate state-of-the-art APS controllers and glucose simulators with a novel fault injection engine. The testbed is used to reproduce the blood glucose trajectories of real patients from a clinical trial conducted over six months. We evaluate the performance of two closed-loop control algorithms (OpenAPS and Basal Bolus) using the testbed and find that these control algorithms are able to keep blood glucose in a safe region 93.49% and 79.46% of the time on average, compared with 66.18% of the time for the clinical trial. The fault injection engine simulates the real recalls and adverse events reported to the U.S. Food and Drug Administration (FDA) and demonstrates the resilience of the controller in hazardous conditions. We use the testbed to generate 2.5 years of synthetic data representing 20 different patient profiles with realistic adverse event scenarios, which would have been expensive and risky to collect in a clinical trial. 
    more » « less