skip to main content


Title: Perceptions, satisfactions, and performance of undergraduate students during Covid‐19 emergency remote teaching
Abstract

Due to the Covid‐19 pandemic, the education system worldwide faced sudden and unforeseen challenges. Many academic institutions closed their doors, forcing both educators and students to transition to Emergency Remote Teaching (ERT) for the remainder of the semester. This transition eliminated hands‐on experiences, increased workload, and altered curricula. However, these aspects, as well as students' perceptions, study habits, and performance in response to ERT remain poorly documented. This contribution describes changes in the curriculum of an undergraduate cadaver‐based laboratory, and explores students' performance, self‐perceived learning, and overall satisfaction during this educational crisis. Online content delivery for this course included both asynchronous instruction and synchronous discussion sessions. While formative assessments remained the same, online spotter examinations included short answer, multiple choice, multiple answer, ordering, and true and false questions. Despite examination grades improving 20% during ERT, students reported lower levels of learning, confidence, and engagement with the course materials when compared to the face‐to‐face portion of the class. The most prevalent challenges identified by students were those related to the loss of access to cadaver‐based learning, including difficulty identifying and visualizing structures in three dimensions, and the loss of context and sensorial cues. Flexibility in taking examinations and learning the material at their own pace were recognized as positive outcomes of the ERT transition. While the resulting student perceptions and performances are unsurprising, they offer insight into the challenges of fostering a productive learning environment in a future threatened by epidemic outbreak and economic uncertainty.

 
more » « less
Award ID(s):
1950805
NSF-PAR ID:
10373303
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Anatomical Sciences Education
Volume:
15
Issue:
1
ISSN:
1935-9772
Page Range / eLocation ID:
p. 42-56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Student perceptions of the complete online transition of two CS courses in response to the COVID-19 pandemic Due to the COVID-19 pandemic, universities across the globe switched from traditional Face-to-Face (F2F) course delivery to completely online. Our university declared during our Spring break that students would not return to campus, and that all courses must be delivered fully online starting two weeks later. This was challenging to both students and instructors. In this evidence-based practice paper, we present results of end-of-semester student surveys from two Spring 2020 CS courses: a programming intensive CS2 course, and a senior theory course in Formal Languages and Automata (FLA). Students indicated course components they perceived as most beneficial to their learning, before and then after the online transition, and preferences for each regarding online vs. F2F. By comparing student reactions across courses, we gain insights on which components are easily adapted to online delivery, and which require further innovation. COVID was unfortunate, but gave a rare opportunity to compare students’ reflections on F2F instruction with online instructional materials for half a semester vs. entirely online delivery of the same course during the second half. The circumstances are unique, but we were able to acquire insights for future instruction. Some course components were perceived to be more useful either before or after the transition, and preferences were not the same in the two courses, possibly due to differences in the courses. Students in both courses found prerecorded asynchronous lectures significantly less useful than in-person lectures. For CS2, online office hours were significantly less useful than in-person office hours, but we found no significant difference in FLA. CS2 students felt less supported by their instructor after the online transition, but no significant difference was indicated by FLA students. FLA students found unproctored online exams offered through Canvas more stressful than in-person proctored exams, but the opposite was indicated by CS2 students. CS2 students indicated that visual materials from an eTextbook were more useful to them after going online than before, but FLA students indicated no significant difference. Overall, students in FLA significantly preferred the traditional F2F version of the course, while no significant difference was detected for CS2 students. We did not find significant effects from gender on the preference of one mode over the other. A serendipitous outcome was learning that some changes forced by circumstance should be considered for long term adoption. Offering online lab sessions and online exams where the questions are primarily multiple choice are possible candidates. However, we found that students need to feel the presence of their instructor to feel properly supported. To determine what course components need further improvement before transitioning to fully online mode, we computed a logistic regression model. The dependent variable is the student's preference for F2F or fully online. The independent variables are the course components before and after the online transition. For both courses, in-person lectures were a significant factor negatively affecting students' preferences of the fully online mode. Similarly, for CS2, in-person labs and in-person office hours were significant factors pushing students’ preferences toward F2F mode. 
    more » « less
  2. This paper describes an evidence based-practice paper to a formative response to the engineering faculty and students’ needs at Anonymous University. Within two weeks, the pandemic forced the vast majority of the 1.5 million faculty and 20 million students nationwide to transition all courses from face-to-face to entirely online. Never in the history of higher education has there been a concerted effort to adapt so quickly and radically, nor have we had the technology to facilitate such a rapid and massive change. At Anonymous University, over 700 engineering educators were racing to transition their courses. Many of those faculty had never experienced online course preparation, much less taught one synchronously or asynchronously. Faculty development centers and technology specialists across the university made a great effort to aid educators in this transition. These educators had questions about the best practices for moving online, how their students were affected, and the best ways to engage their students. However, these faculty’s detailed questions were answerable only by faculty peers’ experience, students’ feedback, and advice from experts in relevant engineering education research-based practices. This paper describes rapid, continuous, and formative feedback provided by the Engineering Education Faculty Group (EEFG) to provide an immediate response for peer faculty guidance during the pandemic, creating a community of practice. The faculty membership spans multiple colleges in the university, including engineering, education, and liberal arts. The EEFG transitioned immediately to weekly meetings focused on the rapidly changing needs of their colleagues. Two surveys were generated rapidly by Hammond et al. to characterize student and faculty concerns and needs in March of 2020 and were distributed through various means and media. Survey 1 and 2 had 3381 and 1506 respondents respectively with most being students, with 113 faculty respondents in survey 1, the focus of this piece of work. The first survey was disseminated as aggregated data to the College of Engineering faculty with suggested modifications to course structures based on these findings. The EEFG continued to meet and collaborate during the remainder of the Spring 2020 semester and has continued through to this day. This group has acted as a hub for teaching innovation in remote online pedagogy and techniques, while also operating as a support structure for members of the group, aiding those members with training in teaching tools, discussion difficult current events, and various challenges they are facing in their professional teaching lives. While the aggregated data gathered from the surveys developed by Hammond et al. was useful beyond measure in the early weeks of the pandemic, little attention at the time was given to the responses of faculty to that survey. The focus of this work has been to characterize faculty perceptions at the beginning of the pandemic and compare those responses between engineering and non-engineering faculty respondents, while also comparing reported perceptions of pre- and post-transition to remote online teaching. Interviews were conducted between 4 members of the EEFG with the goal of characterizing some of the experiences they have had while being members of the group during the time of the pandemic utilizing Grounded theory qualitative analysis. 
    more » « less
  3. Abstract Background

    Due to the COVID-19 pandemic, many universities moved to emergency remote teaching (ERT). This allowed institutions to continue their instruction despite not being in person. However, ERT is not without consequences. For example, students may have inadequate technological supports, such as reliable internet and computers. Students may also have poor learning environments at home and may need to find added employment to support their families. In addition, there are consequences to faculty. It has been shown that female instructors are more disproportionately impacted in terms of mental health issues and increased domestic labor. This research aims to investigate instructors’ and students’ perceptions of their transition to ERT. Specifically, during the transition to ERT at a research-intensive, Minority-Serving Institution (MSI), we wanted to: (1) Identify supports and barriers experienced by instructors and students. (2) Compare instructors’ experiences with the students’ experiences. (3) Explore these supports and barriers within the context ofsocial presence,teaching presence, and/orcognitive presenceas well as how these supports and barriers relate toscaffoldingin STEM courses.

    Results

    Instructors identified twice as many barriers as supports in their teaching during the transition to ERT and identified casual and formal conversations with colleagues as valuable supports. Emerging categories for barriers consisted of academic integrity concerns as well as technological difficulties. Similarly, students identified more barriers than supports in their learning during the transition to ERT. More specifically, students described pre-existing course structure, classroom technology, and community as best supporting their learning. Barriers that challenged student learning included classroom environment, student availability, and student emotion and comfort.

    Conclusions

    Together, this research will help us understand supports and barriers to teaching and learning during the transition to ERT. This understanding can help us better plan and prepare for future emergencies, particularly at MSIs, where improved communication and increased access to resources for both students and instructors are key.

     
    more » « less
  4. This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences. 
    more » « less
  5. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less